In this paper, for the generalized linear models (GLMs) with diverging number of covariates, the asymptotic properties of maximum quasi-likelihood estimators (MQLEs) under some regular conditions are developed. Th...In this paper, for the generalized linear models (GLMs) with diverging number of covariates, the asymptotic properties of maximum quasi-likelihood estimators (MQLEs) under some regular conditions are developed. The existence, weak convergence and the rate of convergence and asymptotic normality of linear combination of MQLEs and asymptotic distribution of single linear hypothesis teststatistics are presented. The results are illustrated by Monte-Carlo simulations.展开更多
基金supported by Major Programm of Natural Science Foundation of China under Grant No.71690242the Natural Science Foundation of China under Grant No.11471252the National Social Science Fund of China under Grant No.18BTJ040
文摘In this paper, for the generalized linear models (GLMs) with diverging number of covariates, the asymptotic properties of maximum quasi-likelihood estimators (MQLEs) under some regular conditions are developed. The existence, weak convergence and the rate of convergence and asymptotic normality of linear combination of MQLEs and asymptotic distribution of single linear hypothesis teststatistics are presented. The results are illustrated by Monte-Carlo simulations.