期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of pulsatile non-Newtonian flow in the carotid artery bifurcation 被引量:3
1
作者 Yubo Fan Wentao Jiang +3 位作者 Yuanwen Zou Jinchuan Li Junkai Chen Xiaoyan Deng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第2期249-255,共7页
Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic f... Both clinical and post mortem studies indicate that, in humans, the carotid sinus of the carotid artery bifurcation is one of the favored sites for the genesis and development of atherosclerotic lesions. Hemodynamic factors have been suggested to be important in atherogenesis. To understand the correlation between atherogenesis and fluid dynamics in the carotid sinus, the blood flow in artery was simulated numerically. In those studies, the property of blood was treated as an incompressible, Newtonian fluid. In fact, however, the blood is a complicated non-Newtonian fluid with shear thinning and viscoelastic properties, especially when the shear rate is low. A variety of non-Newtonian models have been applied in the numerical studies. Among them, the Casson equation was widely used. However, the Casson equation agrees well only when the shear rate is less than 10 s-1. The flow field of the carotid bifurcation usually covers a wide range of shear rate. We therefore believe that it may not be sufficient to describe the property of blood only using the Casson equation in the whole flow field of the carotid bifurcation. In the present study, three different blood constitutive models, namely, the Newtonian, the Casson and the hybrid fluid constitutive models were used in the flow simulation of the human carotid bifurcation. The results were compared among the three models. The results showed that the Newtonian model and the hybrid model had verysimilar distributions of the axial velocity, secondary flow and wall shear stress, but the Casson model resulted in significant differences in these distributions from the other two models. This study suggests that it is not appropriate to only use the Casson equation to simulate the whole flow field of the carotid bifurcation, and on the other hand, Newtonian fluid is a good approximation to blood for flow simulations in the carotid artery bifurcation. 展开更多
关键词 Casson equation Hybrid fluid Newtonianfluid carotid artery bifurcation
下载PDF
Multidimensional modeling of the stenosed carotid artery: A novel CAD approach accompanied by an extensive lumped model 被引量:2
2
作者 A.Kashefi M.Mahdinia +3 位作者 B.Firoozabadi M.Amirkhosravi G.Ahmadi M.S.Saidi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第2期259-273,共15页
This study describes a multidimensional 3D/lumped parameter(LP) model which contains appropriate inflow/outflow boundary conditions in order to model the entire human arterial trees. A new extensive LP model of the ... This study describes a multidimensional 3D/lumped parameter(LP) model which contains appropriate inflow/outflow boundary conditions in order to model the entire human arterial trees. A new extensive LP model of the entire arterial network(48 arteries) was developed including the effect of vessel diameter tapering and the parameterization of resistance, conductor and inductor variables. A computer aided-design(CAD) algorithm was proposed to effciently handle the coupling of two or more 3D models with the LP model, and substantially lessen the coupling processing time. Realistic boundary conditions and Navier-Stokes equations in healthy and stenosed models of carotid artery bifurcation(CAB) were used to investigate the unsteady Newtonian blood flow velocity distribution in the internal carotid artery(ICA). The present simulation results agree well with previous experimental and numerical studies. The outcomes of a pure LP model and those of the coupled 3D healthy model were found to be nearly the same in both cases. Concerning the various analyzed 3D zones, the stenosis growth in the ICA was not found as a crucial factor in determining the absorbing boundary conditions.This paper demonstrates the advantages of coupling local and systemic models to comprehend physiological diseases of the cardiovascular system. 展开更多
关键词 Hemodynamic 3D/LP coupling CAD Realis-tic boundary conditions carotid artery bifurcation Stenosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部