This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(...This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(VCs)in the environment of the number of receive antennas being no less than that of transmit antennas.The VCs will cause a rank deficiency problem in computing the subspace information.With the subcarrier mapping matrix,the received signal is simplified to remove the rank deficiency.We use the RIS scheme to generate many times of equivalent symbols so the channel identification can converge with few received OFDM blocks.The RIS scheme will convert the white noise into non-white noise.With the Cholesky factorization,a noise whitening technique is developed to turn the non-white noise back to white noise.We further analyze the necessary conditions of identifiability of channel estimation.Simulations are performed to show the superiority of the proposed method.展开更多
Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3...Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.展开更多
A new sparse channel estimation method of orthogonal frequency division multiplexing(OFDM) system based on intercarrier interference(ICI) self-cancellation is investigated. Firstly,based on the characteristic that...A new sparse channel estimation method of orthogonal frequency division multiplexing(OFDM) system based on intercarrier interference(ICI) self-cancellation is investigated. Firstly,based on the characteristic that the ICI generated by a subcarrier to the two adjacent subcarriers is approximately equal, a data pair with opposite sign and equal magnitude is modulated onto two adjacent subcarriers as pilot pair to eliminate the effect of ICI on pilots. Secondly, a new OFDM channel estimation model based on linear time-varying(LTV) model and compressed sensing(CS) is constructed, which obtains the mean of the gains of the multipath.Finally, a pilot pair optimization algorithm based on two layers loop is used to realize the minimization of the mutual coherence of the measurement matrix. For time-varying channel scenes with different numbers or delay of multipath and maximum Doppler frequency shift, the performances of several channel estimation methods are verified by simulation. The result shows that the new method has obvious advantage in both the performance of the channel estimation and the spectral efficiency.展开更多
As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is al...As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.展开更多
Coexistence and interoperability between 20 MHz and 40 MHz device and modes of op-erations are stressed in standard IEEE 802.11n system.It is mandate to report the both sub-channels states to Medium Access Control(MAC...Coexistence and interoperability between 20 MHz and 40 MHz device and modes of op-erations are stressed in standard IEEE 802.11n system.It is mandate to report the both sub-channels states to Medium Access Control(MAC) at receiver,since for 40 MHz device,it should serve not only 20 MHz but also 40 MHz signals receiving.Both energy detection and carrier sense are employed to detect channel state.In the case of 20/40 M mode,the power difference between the two sub-channels is also detected in order to report the channel state accurately.The simulation results demonstrate that the performance of the proposed methods are much better than the methods which just employ energy detection.Besides,the simulation results show that the proposed methods ensure that the channel sensing is not a roadblock of IEEE 802.11n system design.展开更多
A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain o...A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain order fractional Fourier domain and transformed by 4-WFRFT to compose the hybrid carrier signals. In the time domain CDMA technique is adopted for multiple accesses and time diversity gain. Compared to orthogonal frequency division multiplexing (OFDM) system, in which Fourier transform is adopted, the signal energy in HC system is distributed on the time-frequency plane more evenly and symmetrically. Thus, when there is a deep fading notch or single-frequency interference in the channel, the proposed method can split the interference to a broader range in order to reduce the influence, resulting in the better system performance. Moreover, the performances of the proposed system, such as peak-to-average power rate (PAPR) and security are also discussed in the paper.展开更多
We have demonstrated the first carrier density model for AlGaN channel with AlN buffer using spontaneous and piezoelectric polarization comparison with experimental and theoretical results. From the results we proved ...We have demonstrated the first carrier density model for AlGaN channel with AlN buffer using spontaneous and piezoelectric polarization comparison with experimental and theoretical results. From the results we proved that the formation of 2DEG in undoped structure relied both on spontaneous and piezoelectric polarization. The electron distribution of Al concentration (0 < x < 0.5) was measured for both AlGaN channel and barrier. Barrier thickness assumed between 20 and 25 nm for validating the experimental results. The carrier concentration was observed at the specific interface of the N- and Ga-face by assuming x1, x2 = 0. The model results are verified with previously reported experimental data.展开更多
A multiuser Ultra Wide Band (UWB) channel suffers seriously from realistic impairments. Among this, multipath fading and interferences, such as Multiple Access Interference (MAI) and Inter Symbol Interference (ISI), t...A multiuser Ultra Wide Band (UWB) channel suffers seriously from realistic impairments. Among this, multipath fading and interferences, such as Multiple Access Interference (MAI) and Inter Symbol Interference (ISI), that significantly degrade the system performance. In this paper, a polar coding technique, originally developed by Arikan, is suggested to enhance the BER performance of indoor UWB based Orthogonal Frequency Division Multiplexing (OFDM) communications. Moreover, Interleave Division Multiple Access (IDMA) scheme has been considered for multiuser detection depending on the turbo type Chip-By-Chip (CBC) iterative detection strategy. Three different models as Symmetric Alpha Stable (SαS), Laplace model and Gaussian Mixture Model (GMM), have been introduced for approximating the interferences which are more realistic for UWB system. The performance of the proposed Polar-coded IDMA OFDM-based UWB system is investigated under UWB channel models proposed by IEEE 802.15.3a working group and compared with Low Density Parity Check (LDPC)-coded IDMA OFDM-based UWB system in terms of BER performance and complexity under the studied noise models. Simulation results show that the complexity of the proposed polar-coded system is much lower than LDPC-coded system with minor performance degradation. Furthermore, the proposed polar-coded system is robust against noise and interferences in UWB indoor environment and gains a significant performance improvement by about 5 dB compared with un-coded IDMA-OFDM-UWB system under the studied noise models.展开更多
基金Fujian Province Education Department(No.JAT170470)in part by the National Nature Science Foundation of China(No.61501041)+1 种基金in part by the Open Foundation of State Key Laboratory(No.ISN19-19)in part by the Ministry of Science and Technology,Taiwan,China(No.MOST 104-2221-E-030-004-MY2,MOST 108-2221-E-030-002).
文摘This paper applies the repetition index scheme(RIS)to the channel identification of cyclic prefixed(CP)multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)systems with virtual carriers(VCs)in the environment of the number of receive antennas being no less than that of transmit antennas.The VCs will cause a rank deficiency problem in computing the subspace information.With the subcarrier mapping matrix,the received signal is simplified to remove the rank deficiency.We use the RIS scheme to generate many times of equivalent symbols so the channel identification can converge with few received OFDM blocks.The RIS scheme will convert the white noise into non-white noise.With the Cholesky factorization,a noise whitening technique is developed to turn the non-white noise back to white noise.We further analyze the necessary conditions of identifiability of channel estimation.Simulations are performed to show the superiority of the proposed method.
文摘Construction of multi-channels of photo-carrier migration in photocatalysts is favor to boost conversion efficiency of solar energy by promoting the charge separation and transfer.Herein,a ternary ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene hybrid composed of S-scheme junction integrated Schottky-junction was fabricated using a simple hydrothermal approach.All the components(g-C_(3)N_(4),ZnIn_(2)S_(4) and Ti_(3)C_(2) MXene)demonstrated two-dimensional(2D)nanosheets structure,leading to the formation of a 2D/2D/2D sandwich-like structure with intimate large interface for carrier migration.Furthermore,the photogenerated carriers on the g-C_(3)N_(4) possessed dual transfer channels,including one route in S-scheme transfer mode between the g-C_(3)N_(4) and ZnIn_(2)S_(4) and the other route in Schottky-junction between g-C_(3)N_(4) and Ti_(3)C_(2) MXene.Consequently,a highly efficient carrier separation and transport was realized in the ZnIn_(2)S_(4)/g-C_(3)N_(4)/Ti_(3)C_(2) MXene heterojunction.This ternary sample exhibited wide light response from 200 to 1400 nm and excellent photocatalytic H_(2) evolution of 2452.1μmol∙g^(–1)∙h^(–1),which was 200,3,1.5 and 1.6 times of g-C_(3)N_(4),ZnIn_(2)S_(4),ZnIn_(2)S_(4)/Ti_(3)C_(2) MXene and g-C_(3)N_(4)/ZnIn_(2)S_(4) binary composites.This work offers a paradigm for the rational construction of multi-electron pathways to regulate the charge separation and migration via the introduction of dual-junctions in catalytic system.
基金supported by the National Natural Science Foundation of China(61571368)
文摘A new sparse channel estimation method of orthogonal frequency division multiplexing(OFDM) system based on intercarrier interference(ICI) self-cancellation is investigated. Firstly,based on the characteristic that the ICI generated by a subcarrier to the two adjacent subcarriers is approximately equal, a data pair with opposite sign and equal magnitude is modulated onto two adjacent subcarriers as pilot pair to eliminate the effect of ICI on pilots. Secondly, a new OFDM channel estimation model based on linear time-varying(LTV) model and compressed sensing(CS) is constructed, which obtains the mean of the gains of the multipath.Finally, a pilot pair optimization algorithm based on two layers loop is used to realize the minimization of the mutual coherence of the measurement matrix. For time-varying channel scenes with different numbers or delay of multipath and maximum Doppler frequency shift, the performances of several channel estimation methods are verified by simulation. The result shows that the new method has obvious advantage in both the performance of the channel estimation and the spectral efficiency.
文摘As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.
文摘Coexistence and interoperability between 20 MHz and 40 MHz device and modes of op-erations are stressed in standard IEEE 802.11n system.It is mandate to report the both sub-channels states to Medium Access Control(MAC) at receiver,since for 40 MHz device,it should serve not only 20 MHz but also 40 MHz signals receiving.Both energy detection and carrier sense are employed to detect channel state.In the case of 20/40 M mode,the power difference between the two sub-channels is also detected in order to report the channel state accurately.The simulation results demonstrate that the performance of the proposed methods are much better than the methods which just employ energy detection.Besides,the simulation results show that the proposed methods ensure that the channel sensing is not a roadblock of IEEE 802.11n system design.
基金Sponsored by the National Natural Science Foundation General Program of China(Grant No.61171110)
文摘A hybrid carrier (HC) DS CDMA communication system is proposed, combining 4-weighted fractional Fourier transform (4-WFRFT) with code division multiple access (CDMA) technique. The signals are modulated in a certain order fractional Fourier domain and transformed by 4-WFRFT to compose the hybrid carrier signals. In the time domain CDMA technique is adopted for multiple accesses and time diversity gain. Compared to orthogonal frequency division multiplexing (OFDM) system, in which Fourier transform is adopted, the signal energy in HC system is distributed on the time-frequency plane more evenly and symmetrically. Thus, when there is a deep fading notch or single-frequency interference in the channel, the proposed method can split the interference to a broader range in order to reduce the influence, resulting in the better system performance. Moreover, the performances of the proposed system, such as peak-to-average power rate (PAPR) and security are also discussed in the paper.
文摘We have demonstrated the first carrier density model for AlGaN channel with AlN buffer using spontaneous and piezoelectric polarization comparison with experimental and theoretical results. From the results we proved that the formation of 2DEG in undoped structure relied both on spontaneous and piezoelectric polarization. The electron distribution of Al concentration (0 < x < 0.5) was measured for both AlGaN channel and barrier. Barrier thickness assumed between 20 and 25 nm for validating the experimental results. The carrier concentration was observed at the specific interface of the N- and Ga-face by assuming x1, x2 = 0. The model results are verified with previously reported experimental data.
文摘A multiuser Ultra Wide Band (UWB) channel suffers seriously from realistic impairments. Among this, multipath fading and interferences, such as Multiple Access Interference (MAI) and Inter Symbol Interference (ISI), that significantly degrade the system performance. In this paper, a polar coding technique, originally developed by Arikan, is suggested to enhance the BER performance of indoor UWB based Orthogonal Frequency Division Multiplexing (OFDM) communications. Moreover, Interleave Division Multiple Access (IDMA) scheme has been considered for multiuser detection depending on the turbo type Chip-By-Chip (CBC) iterative detection strategy. Three different models as Symmetric Alpha Stable (SαS), Laplace model and Gaussian Mixture Model (GMM), have been introduced for approximating the interferences which are more realistic for UWB system. The performance of the proposed Polar-coded IDMA OFDM-based UWB system is investigated under UWB channel models proposed by IEEE 802.15.3a working group and compared with Low Density Parity Check (LDPC)-coded IDMA OFDM-based UWB system in terms of BER performance and complexity under the studied noise models. Simulation results show that the complexity of the proposed polar-coded system is much lower than LDPC-coded system with minor performance degradation. Furthermore, the proposed polar-coded system is robust against noise and interferences in UWB indoor environment and gains a significant performance improvement by about 5 dB compared with un-coded IDMA-OFDM-UWB system under the studied noise models.