针对预警中空间群目标反演精度不高、鲁棒性较差的问题,提出了一种基于分类回归树(classification and regression tree,CART)算法的空间目标本体反演方法。首先构建分类与回归决策树,并将空间目标的入射角、光谱辐射亮度、温度等特征...针对预警中空间群目标反演精度不高、鲁棒性较差的问题,提出了一种基于分类回归树(classification and regression tree,CART)算法的空间目标本体反演方法。首先构建分类与回归决策树,并将空间目标的入射角、光谱辐射亮度、温度等特征数据作为决策树的输入;再基于基尼系数评估数据纯度,对目标在不同温度、不同入射角下的光谱辐射亮度进行分割;最后通过在每个节点处对数据集进行划分,实现对空间目标本体的有效反演。数值对比实验表明,3种典型空间目标的决策树模型反演结果与实际情况一致,验证了所提方法的有效性。展开更多
针对当前单一地貌划分单元造成的分类结果破碎或漏分问题,该文引入双尺度流域单元划分方法,即采用两种不同大小流域单元的组合作为地貌划分基本单元,以提高地貌划分的细分性和完整性。以30 m ASTER GDEM数据为数据源,基于最佳地形因子组...针对当前单一地貌划分单元造成的分类结果破碎或漏分问题,该文引入双尺度流域单元划分方法,即采用两种不同大小流域单元的组合作为地貌划分基本单元,以提高地貌划分的细分性和完整性。以30 m ASTER GDEM数据为数据源,基于最佳地形因子组合(高程、地势起伏度、坡度、坡度变率、光照模拟值)、双尺度流域单元、CART决策树算法,实现了北回归线(云南段)地区平原(2类)和山地(7类)共9类地貌的划分,双尺度流域单元划分的最佳流量阈值分别为500、2000。通过平均值、标准差、Moran′s I和人工判读结果对分类结果进行检验,发现基于CART决策树的双尺度流域单元地貌分类方法在北回归线(云南段)地区总体精度可达82.1%,Kappa系数为0.793,总体能够准确识别出研究区的地貌类型空间分布特征,是地貌类型划分的一种可行方法。展开更多
文摘针对预警中空间群目标反演精度不高、鲁棒性较差的问题,提出了一种基于分类回归树(classification and regression tree,CART)算法的空间目标本体反演方法。首先构建分类与回归决策树,并将空间目标的入射角、光谱辐射亮度、温度等特征数据作为决策树的输入;再基于基尼系数评估数据纯度,对目标在不同温度、不同入射角下的光谱辐射亮度进行分割;最后通过在每个节点处对数据集进行划分,实现对空间目标本体的有效反演。数值对比实验表明,3种典型空间目标的决策树模型反演结果与实际情况一致,验证了所提方法的有效性。
文摘针对当前单一地貌划分单元造成的分类结果破碎或漏分问题,该文引入双尺度流域单元划分方法,即采用两种不同大小流域单元的组合作为地貌划分基本单元,以提高地貌划分的细分性和完整性。以30 m ASTER GDEM数据为数据源,基于最佳地形因子组合(高程、地势起伏度、坡度、坡度变率、光照模拟值)、双尺度流域单元、CART决策树算法,实现了北回归线(云南段)地区平原(2类)和山地(7类)共9类地貌的划分,双尺度流域单元划分的最佳流量阈值分别为500、2000。通过平均值、标准差、Moran′s I和人工判读结果对分类结果进行检验,发现基于CART决策树的双尺度流域单元地貌分类方法在北回归线(云南段)地区总体精度可达82.1%,Kappa系数为0.793,总体能够准确识别出研究区的地貌类型空间分布特征,是地貌类型划分的一种可行方法。