Let YIV be the Super-Cartan domain of the fourth type, We reduce the Monge-Ampere equation for the metric to an ordinary differential equation in the auxiliary function X = X(Z, W). This differential equation can be...Let YIV be the Super-Cartan domain of the fourth type, We reduce the Monge-Ampere equation for the metric to an ordinary differential equation in the auxiliary function X = X(Z, W). This differential equation can be solved to give an implicit function in X. We give the generating function of the Einstein Kahler metric on YIV. We obtain the explicit form of the complete Einstein-Kahler metric on YIV for a special case.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.10471097)Scientific Research Common Program of Beijing Municipal Commission of Education(Grant NO.KM200410028002)Supported by National Natural Science Foundation of China(Grant No
文摘Let YIV be the Super-Cartan domain of the fourth type, We reduce the Monge-Ampere equation for the metric to an ordinary differential equation in the auxiliary function X = X(Z, W). This differential equation can be solved to give an implicit function in X. We give the generating function of the Einstein Kahler metric on YIV. We obtain the explicit form of the complete Einstein-Kahler metric on YIV for a special case.