期刊文献+
共找到156篇文章
< 1 2 8 >
每页显示 20 50 100
Geodetic Number and Geo-Chromatic Number of 2-Cartesian Product of Some Graphs
1
作者 Medha Itagi Huilgol B. Divya 《Open Journal of Discrete Mathematics》 2022年第1期1-16,共16页
A set <em>S ⊆ V (G)</em> is called a geodetic set if every vertex of <em>G</em> lies on a shortest <em>u-v</em> path for some <em>u, v ∈ S</em>, the minimum cardinality... A set <em>S ⊆ V (G)</em> is called a geodetic set if every vertex of <em>G</em> lies on a shortest <em>u-v</em> path for some <em>u, v ∈ S</em>, the minimum cardinality among all geodetic sets is called geodetic number and is denoted by <img src="Edit_82259359-0135-4a65-9378-b767f0405b48.png" alt="" />. A set <em>C ⊆ V (G)</em> is called a chromatic set if <em>C</em> contains all vertices of different colors in<em> G</em>, the minimum cardinality among all chromatic sets is called the chromatic number and is denoted by <img src="Edit_d849148d-5778-459b-abbb-ff25b5cd659b.png" alt="" />. A geo-chromatic set<em> S</em><sub><em>c</em></sub><em> ⊆ V (G</em><em>)</em> is both a geodetic set and a chromatic set. The geo-chromatic number <img src="Edit_505e203c-888c-471c-852d-4b9c2dd1a31c.png" alt="" /><em> </em>of<em> G</em> is the minimum cardinality among all geo-chromatic sets of<em> G</em>. In this paper, we determine the geodetic number and the geo-chromatic number of 2-cartesian product of some standard graphs like complete graphs, cycles and paths. 展开更多
关键词 cartesian product Grid graphs Geodetic Set Geodetic Number Chromatic Set Chromatic Number Geo-Chromatic Set Geo-Chromatic Number
下载PDF
The Path-Positive Property on the Products of Graphs
2
作者 连广昌 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期130-134,共5页
The products of graphs discussed in this paper are the following four kinds: the Cartesian product of graphs, the tensor product of graphs, the lexicographic product of graphs and the strong direct product of graphs. ... The products of graphs discussed in this paper are the following four kinds: the Cartesian product of graphs, the tensor product of graphs, the lexicographic product of graphs and the strong direct product of graphs. It is proved that:① If the graphs G 1 and G 2 are the connected graphs, then the Cartesian product, the lexicographic product and the strong direct product in the products of graphs, are the path positive graphs. ② If the tensor product is a path positive graph if and only if the graph G 1 and G 2 are the connected graphs, and the graph G 1 or G 2 has an odd cycle and max{ λ 1μ 1,λ nμ m}≥2 in which λ 1 and λ n [ or μ 1 and μ m] are maximum and minimum characteristic values of graph G 1 [ or G 2 ], respectively. 展开更多
关键词 product of graphs path positive property cartesian product of graphs tensor product of graphs lexicographic product of graphs strong direct product of graphs
下载PDF
Circular L(j,k)-labeling numbers of trees and products of graphs 被引量:3
3
作者 吴琼 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期142-145,共4页
Let j, k and m be three positive integers, a circular m-L(j, k)-labeling of a graph G is a mapping f: V(G)→{0, 1, …, m-1}such that f(u)-f(v)m≥j if u and v are adjacent, and f(u)-f(v)m≥k if u and v are... Let j, k and m be three positive integers, a circular m-L(j, k)-labeling of a graph G is a mapping f: V(G)→{0, 1, …, m-1}such that f(u)-f(v)m≥j if u and v are adjacent, and f(u)-f(v)m≥k if u and v are at distance two,where a-bm=min{a-b,m-a-b}. The minimum m such that there exists a circular m-L(j, k)-labeling of G is called the circular L(j, k)-labeling number of G and is denoted by σj, k(G). For any two positive integers j and k with j≤k,the circular L(j, k)-labeling numbers of trees, the Cartesian product and the direct product of two complete graphs are determined. 展开更多
关键词 circular L(j k)-labeling number TREE cartesian product of graphs direct product of graphs
下载PDF
Domination Number of Square of Cartesian Products of Cycles
4
作者 Morteza Alishahi Sakineh Hoseini Shalmaee 《Open Journal of Discrete Mathematics》 2015年第4期88-94,共7页
A set ?is a dominating set of G if every vertex of ?is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G is called the domination number of G. The square G2 of a graph G is obta... A set ?is a dominating set of G if every vertex of ?is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G is called the domination number of G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices having distance 2 in G. In this paper we study the domination number of square of graphs, find a bound for domination number of square of Cartesian product of cycles, and find the exact value for some of them. 展开更多
关键词 DOMINATION NUMBER SQUARE of a graph cartesian product
下载PDF
On the Signed Domination Number of the Cartesian Product of Two Directed Cycles
5
作者 Ramy Shaheen 《Open Journal of Discrete Mathematics》 2015年第3期54-64,共11页
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination numb... Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function ?is called a signed dominating function (SDF) if ?for each vertex . The weight ?of f is defined by . The signed domination number of a digraph D is . Let Cm × Cn denotes the cartesian product of directed cycles of length m and n. In this paper, we determine the exact values of gs(Cm × Cn) for m = 8, 9, 10 and arbitrary n. Also, we give the exact value of gs(Cm × Cn) when m, ?(mod 3) and bounds for otherwise. 展开更多
关键词 Directed graph Directed CYCLE cartesian product SIGNED Dominating Function SIGNED DOMINATION NUMBER
下载PDF
两类乘积图的集边控制数
6
作者 陈航迪 阮其华 +1 位作者 蔡惠婷 曾月迪 《莆田学院学报》 2024年第5期29-32,共4页
图的集边控制数是研究图的边控制集划分问题的重要参数。采用分类讨论的方法,研究两类乘积图的集边控制数,分别确定了强乘积图P_(m)■P_(n)(m≥2,n≥3)和笛卡尔乘积图P_(2)×C_(n)的集边控制数。
关键词 强乘积图 笛卡尔乘积图 集边控制数
下载PDF
可交换图的一些注记 被引量:1
7
作者 吴寒 刘奋进 +2 位作者 尚凡琦 周艳红 阮昊桐 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第2期172-177,共6页
如果存在一种顶点标号,使得2个简单图的邻接矩阵可交换,则称2个简单图可交换。首先,从图的Perron向量、主特征值数量、正则性三方面给出了可交换图的必要条件。然后,借助矩阵的克罗内克积、图的笛卡尔积及循环矩阵,构造了新的可交换图... 如果存在一种顶点标号,使得2个简单图的邻接矩阵可交换,则称2个简单图可交换。首先,从图的Perron向量、主特征值数量、正则性三方面给出了可交换图的必要条件。然后,借助矩阵的克罗内克积、图的笛卡尔积及循环矩阵,构造了新的可交换图。最后,将一个邻接矩阵表示为另一个特征值互异的邻接矩阵的矩阵多项式,给出了2种算法,并比较了二者的优劣。可交换图存在公共的特征向量,对图谱理论研究具有重要意义。 展开更多
关键词 可交换图 正则图 循环图 克罗内克积 笛卡尔积
下载PDF
Graph Laplacian Matrix Learning from Smooth Time-Vertex Signal 被引量:1
8
作者 Ran Li Junyi Wang +2 位作者 Wenjun Xu Jiming Lin Hongbing Qiu 《China Communications》 SCIE CSCD 2021年第3期187-204,共18页
In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesia... In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data. 展开更多
关键词 cartesian product graph discrete secondorder difference operator Gaussian prior distribution graph Laplacian matrix learning spatiotemporal smoothness time-vertex signal
下载PDF
图的Cartesian积结构分析及其Hedetniemi染色猜想
9
作者 斯钦 阿勇嘎 《内蒙古师范大学学报(自然科学汉文版)》 CAS 北大核心 2015年第1期8-11,共4页
利用Cartesian积等价地表示出极大扩容图的代数结构,对Hedetniemi染色猜想进行了研究.根据极大扩容图的代数结构性质及与原图的关系,证明了简单图的若干次扩容图满足Hedetniemi染色猜想,得到了对Hedetniemi染色猜想成立的无限类图.
关键词 Hedetniemi 染色猜想 cartesian 扩容图 染色数
下载PDF
正则图Cartesian积的线图的秩 被引量:1
10
作者 周后卿 《邵阳学院学报(自然科学版)》 2008年第3期7-9,共3页
设G是一个顶点为n,度为r的正则图,那么它的边为m=1/2 nr.G的线图是顶点为m,度为(2r-2),边为1/2nr(r-1)的正则图.本文研究两个正则图或强正则图的Cartesian积图的线图的秩,得到了许多结果,推广了G.J.Davis,G.S.Domke等人的结论.
关键词 正则图 cartesian 线图
下载PDF
完全正则三部图与二部图的笛卡尔积的亏格
11
作者 郭婷 《数学理论与应用》 2024年第2期92-102,共11页
设Km,m,m(m≥1)是一个完全正则三部图,G是一个围长大于4的二部图.当G的最大度不大于2m时,本文得到完全正则三部图Km,m,m与G的笛卡尔积的亏格.我们的结果推广了Bonnington和Pisanski关于Km,m,m与偶圈的笛卡尔积的亏格.此外,我们还得到了K... 设Km,m,m(m≥1)是一个完全正则三部图,G是一个围长大于4的二部图.当G的最大度不大于2m时,本文得到完全正则三部图Km,m,m与G的笛卡尔积的亏格.我们的结果推广了Bonnington和Pisanski关于Km,m,m与偶圈的笛卡尔积的亏格.此外,我们还得到了Km,m,m与一些非二部图的笛卡尔积的不可定向亏格. 展开更多
关键词 亏格 完全正则三部图 二部图 笛卡尔积
下载PDF
仙人掌图和卡氏积图的连通包数
12
作者 贾倩琼 陈春霖 +1 位作者 秦文文 马儇龙 《井冈山大学学报(自然科学版)》 2024年第4期1-6,共6页
测地线的概念起源于几何学、拓扑学及函数分析中的凸集理论,它在选址问题、网络设计及控制理论等方面有重要意义。在图论中定义了凸性后,测地线问题及与之相关的测地数问题成为揭示图的结构性质的一个重要指标及参数。图的连通包数是定... 测地线的概念起源于几何学、拓扑学及函数分析中的凸集理论,它在选址问题、网络设计及控制理论等方面有重要意义。在图论中定义了凸性后,测地线问题及与之相关的测地数问题成为揭示图的结构性质的一个重要指标及参数。图的连通包数是定义在图中测地线上的一个参数。针对计算图的连通包数问题,本研究用组合分析法确定了仙人掌图C_(n)·C_(n)及卡氏积图P_(m)×K_(2)、P_(m)×C_(3)、P_(2)×C_(n)的连通包数,其中m≥2,n≥3,P_(m)是长度为m-1的路,C_(n)是长度为n的圈。 展开更多
关键词 凸集 连通包集 连通包数 仙人掌图 卡氏积
下载PDF
Cartesian积图的边泛圈性
13
作者 张宪敏 原军 《太原科技大学学报》 2012年第4期321-324,共4页
网络中子图的可嵌入性是度量网络优劣的一个重要性能。圈作为网络拓扑中一类重要的子图,其可嵌入性可以通过泛圈性来度量。Cartesian积图是互联网络拓扑结构中一类非常重要的图类。设G是长为k1和k2的圈的Cartesian积图。利用Cartesian... 网络中子图的可嵌入性是度量网络优劣的一个重要性能。圈作为网络拓扑中一类重要的子图,其可嵌入性可以通过泛圈性来度量。Cartesian积图是互联网络拓扑结构中一类非常重要的图类。设G是长为k1和k2的圈的Cartesian积图。利用Cartesian积图的顶点和边的传递性,证明了当k1≥3,k2≥3,G是边偶泛圈的;当k1,k2均为奇数时,G是(k1+k22)-边泛圈的。 展开更多
关键词 Hamilton连通图 cartesian积图 边偶泛圈 边泛圈性
下载PDF
On the 2-Domination Number of Complete Grid Graphs
14
作者 Ramy Shaheen Suhail Mahfud Khames Almanea 《Open Journal of Discrete Mathematics》 2017年第1期32-50,共19页
A set D of vertices of a graph G = (V, E) is called k-dominating if every vertex v ∈V-D is adjacent to some k vertices of D. The k-domination number of a graph G, γk (G), is the order of a smallest k-dominating set ... A set D of vertices of a graph G = (V, E) is called k-dominating if every vertex v ∈V-D is adjacent to some k vertices of D. The k-domination number of a graph G, γk (G), is the order of a smallest k-dominating set of G. In this paper we calculate the k-domination number (for k = 2) of the product of two paths Pm × Pn for m = 1, 2, 3, 4, 5 and arbitrary n. These results were shown an error in the paper [1]. 展开更多
关键词 k-Dominating SET K-DOMINATION NUMBER 2-Dominating SET 2-Domination NUMBER cartesian product graphs PATHS
下载PDF
Zero-M-Cordial Labeling of Some Graphs
15
作者 Freeda Selvanayagom Robinson S. Chellathurai 《Applied Mathematics》 2012年第11期1648-1654,共7页
In this paper we prove that the complete bipartite graph kmn where m and n are even, join of two cycle graphs cn and cm where n + m ≡ 0 (mod 4), split graph of cn for even “n”, Kn × P2 where n is even are admi... In this paper we prove that the complete bipartite graph kmn where m and n are even, join of two cycle graphs cn and cm where n + m ≡ 0 (mod 4), split graph of cn for even “n”, Kn × P2 where n is even are admits a Zero-M-Cordial labeling. Further we prove that Kn × P2Bn = K1,n × P2 of odd n admits a Zero-M-Cordial labeling. 展开更多
关键词 Zero-M-Cordial LABELING Split graphS cartesian product H-Cordial
下载PDF
On Signed Domination of Grid Graph
16
作者 Mohammad Hassan Muhsin Al Hassan Mazen Mostafa 《Open Journal of Discrete Mathematics》 2020年第4期96-112,共17页
Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function ... Let <em>G</em>(<em>V</em>, <em>E</em>) be a finite connected simple graph with vertex set <em>V</em>(<em>G</em>). A function is a signed dominating function <em>f </em>: <em style="white-space:normal;">V</em><span style="white-space:normal;">(</span><em style="white-space:normal;">G</em><span style="white-space:normal;">)</span><span style="white-space:nowrap;">→{<span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>1,1}</span> if for every vertex <em>v</em> <span style="white-space:nowrap;">∈</span> <em>V</em>(<em>G</em>), the sum of closed neighborhood weights of <em>v</em> is greater or equal to 1. The signed domination number <em>γ</em><sub>s</sub>(<em>G</em>) of <em>G</em> is the minimum weight of a signed dominating function on <em>G</em>. In this paper, we calculate the signed domination numbers of the Cartesian product of two paths <em>P</em><sub><em>m</em></sub> and <em>P</em><sub><em>n</em></sub> for <em>m</em> = 6, 7 and arbitrary <em>n</em>. 展开更多
关键词 Grid graph cartesian product Signed Dominating Function Signed Domination Number
下载PDF
On Locating Numbers of Graphs
17
作者 Baogen Xu Chunhua Li Zhizhu Fan 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第1期93-96,共4页
Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W ... Let G =( V,E) be a connected graph and W = { w_1,w_2,…,w_k} be an ordered subset of V( G).For any vertex v ∈V,the locating code of v with respect to W is the k-vector CW( v) = { d( v,w_1),d( v,w_2),…,d( v,w_k) },W is said to be a locating set of G if distinct vertices have the distinct locating code,and the locating number of G is defined as: Loc( G) = min{ | W| : W is a locating set of G}.We study the locating set and locating number of a graph G,obtain some bounds for the locating numbers of graphs,and determine the exact value of Loc( G) for some special classes of graphs,such as cycles,wheels,complete t-partite graph and some Cartesian products of paths and cycles. In addition,we also prove that Loc( T) ≥Δ-1 holds for all trees T with maximum degree Δ,and shows a tree T with Loc( T) = Δ-1. 展开更多
关键词 graph locating code locating SET locating NUMBER cartesian products
下载PDF
SOME PROPERTIES OF A CLASS OF INTERCHANGE GRAPHS
18
作者 QIANJIANGUO XIANGJUMIN 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1998年第4期455-462,共8页
Abstract Let U(R,S) denote the class of all (0,1) m×n matrices having row sum vector R and column sum vector S. The interchange graph G(R,S) is the graph where the vertices are the matrices in U(R,S) and two... Abstract Let U(R,S) denote the class of all (0,1) m×n matrices having row sum vector R and column sum vector S. The interchange graph G(R,S) is the graph where the vertices are the matrices in U(R,S) and two vertices representing two such matrices are adjacent provided they differ by an interchange. It is proved that G(R,(1,1,...,1)) is a generalized Cartesian product of some Johnson Scheme graphs. Furthermore, its connectivity, diameter and transitivity (vertex ,edge ) are also determined. 展开更多
关键词 (0 1)-matrix interchange graph generalized cartesian product
全文增补中
笛卡儿积图的2-hued列表染色 被引量:1
19
作者 刘丙雪 刘凤霞 《新疆大学学报(自然科学版)(中英文)》 CAS 2023年第1期30-35,共6页
给定图G的一个列表分配L,图G的一个(L,r)-染色,是一个正常染色c满足:每个顶点v都至少和min{d(v),r}种不同颜色的顶点相邻,并且c(v)属于L(v).图G的r-hued列表染色数,记为χL,r(G),是最小正整数k满足对于任意一个|L(v)|=k的列表分配L,图G... 给定图G的一个列表分配L,图G的一个(L,r)-染色,是一个正常染色c满足:每个顶点v都至少和min{d(v),r}种不同颜色的顶点相邻,并且c(v)属于L(v).图G的r-hued列表染色数,记为χL,r(G),是最小正整数k满足对于任意一个|L(v)|=k的列表分配L,图G有一个(L,r)-染色.最后证明了χL,2(P_(m)□P_(n))=4,并且确定了χL,2(P_(m)□C_(n))的范围. 展开更多
关键词 笛卡儿积图 2-hued列表染色
下载PDF
K_(n)□K_(m,s)的r-hued染色
20
作者 梁玲梅 刘凤霞 赖虹建 《吉林大学学报(理学版)》 CAS 北大核心 2023年第1期85-93,共9页
考虑完全图K_(n)和完全二部图K_(m,s)的笛卡尔乘积图的r-hued色数.首先,根据正整数r的不同值进行分类,并结合K_(n)□K_(m,s)的性质,刻画该图r-hued色数的下界;其次,找到K_(n)□K_(m,s)的一个具体的(k,r)-染色,并以此刻画该图r-hued色数... 考虑完全图K_(n)和完全二部图K_(m,s)的笛卡尔乘积图的r-hued色数.首先,根据正整数r的不同值进行分类,并结合K_(n)□K_(m,s)的性质,刻画该图r-hued色数的下界;其次,找到K_(n)□K_(m,s)的一个具体的(k,r)-染色,并以此刻画该图r-hued色数的一个上界;最后,确定了K_(n)□K_(m,s)的r-hued色数. 展开更多
关键词 (k r)-染色 r-hued色数 笛卡尔乘积图
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部