期刊文献+
共找到567篇文章
< 1 2 29 >
每页显示 20 50 100
Mesenchymal stem cells as a potent cell source for articular cartilage regeneration 被引量:13
1
作者 Mohamadreza Baghaban Eslaminejad Elham Malakooty Poor 《World Journal of Stem Cells》 SCIE CAS 2014年第3期344-354,共11页
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimul... Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review. 展开更多
关键词 MESENCHYMAL stem cells REGENERATION ARTICULAR cartilage cell therapy
下载PDF
Mesenchymal stem cells for cartilage regeneration in osteoarthritis 被引量:8
2
作者 Baldur Kristjánsson Sittisak Honsawek 《World Journal of Orthopedics》 2017年第9期674-680,共7页
Osteoarthritis(OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with l... Osteoarthritis(OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with lack of conventional treatment, patients are often left with no other choices than arthroplasty. Over the last years, multipotent stromal cells have been used in efforts to treat OA. Mesenchymal stem/progenitor cells(MSCs) are stromal cells that can differentiate into bone, fat, and cartilage cells. They reside within bone marrow and fat. MSCs can also be found in synovial joints where they affect the progression of OA. They can be isolated and proliferated in an incubator before being applied in clinical trials. When it comes to treatment, emphasis has hitherto been on autologous MSCs, but allogenic cells from healthy donors are emerging as another source of the cells. The first adaptations of MSCs revolved in the use of cellrich matrix, delivered as invasive surgical procedure, which resulted in production of hyaline cartilage and fibrocartilage. However, the demand for less invasive delivery of cells has prompted the use of direct intraarticular injections, wherein a large amount of suspended cells are implanted in the cartilage defect. 展开更多
关键词 INTRA-ARTICULAR INJECTION MESENCHYMAL stem cells OSTEOARTHRITIS REGENERATION cartilage
下载PDF
In Vitro Targeted Magnetic Delivery and Tracking of Superparamagnetic Iron Oxide Particles Labeled Stem Cells for Articular Cartilage Defect Repair 被引量:4
3
作者 冯勇 金旭红 +3 位作者 戴刚 刘军 陈家荣 杨柳 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第2期204-209,共6页
To assess a novel cell manipulation technique of tissue engineering with respect to its ability to augment superparamagnetic iron oxide particles (SPIO) labeled mesenchymal stem cells (MSCs) density at a localized... To assess a novel cell manipulation technique of tissue engineering with respect to its ability to augment superparamagnetic iron oxide particles (SPIO) labeled mesenchymal stem cells (MSCs) density at a localized cartilage defect site in an in vitro phantom by applying magnetic force. Meanwhile, non-invasive imaging techniques were use to track SPIO-labeled MSCs by magnetic resonance imaging (MRI). Human bone marrow MSCs were cultured and labeled with SPIO. Fresh degenerated human osteochondral fragments were obtained during total knee arthroplasty and a cartilage defect was created at the center. Then, the osteochondral fragments were attached to the sidewalls of culture flasks filled with phosphate-buffered saline (PBS) to mimic the human joint cavity. The SPIO-labeled MSCs were injected into the culture flasks in the presence of a 0.57 Tesla (T) magnetic force. Before and 90 min after cell targeting, the specimens underwent T2-weighted turbo spin-echo (SET2WI) sequence of 3.0 T MRI. MRI results were compared with histological findings. Macroscopic observation showed that SPIO-labeled MSCs were steered to the target region of cartilage defect. MRI revealed significant changes in signal intensity (P0.01). HE staining exibited that a great number of MSCs formed a three-dimensional (3D) cell "sheet" structure at the chondral defect site. It was concluded that 0.57 T magnetic force permits spatial delivery of magnetically labeled MSCs to the target region in vitro. High-field MRI can serve as an very sensitive non-invasive technique for the visualization of SPIO-labeled MSCs. 展开更多
关键词 superparamagnetic iron oxide particles human bone-derived mesenchymal stem cells (hbMSCs) cartilage defect magnetic resonance imaging (MRI) magnetic targeting cell delivery system cell therapy
下载PDF
High tibial osteotomy with human umbilical cord blood-derived mesenchymal stem cells implantation for knee cartilage regeneration 被引量:4
4
作者 Jun-Seob Song Ki-Taek Hong +6 位作者 Chae-Gwan Kong Na-Min Kim Jae-Yub Jung Han-Soo Park Young Ju Kim Ki Bong Chang Seok Jung Kim 《World Journal of Stem Cells》 SCIE CAS 2020年第6期514-526,共13页
BACKGROUND High tibial osteotomy(HTO)is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity.However,HTO alone cannot adequately repair the arthritic joint,... BACKGROUND High tibial osteotomy(HTO)is a well-established method for the treatment of medial compartment osteoarthritis of the knee with varus deformity.However,HTO alone cannot adequately repair the arthritic joint,necessitating cartilage regeneration therapy.Cartilage regeneration procedures with concomitant HTO are used to improve the clinical outcome in patients with varus deformity.AIM To evaluate cartilage regeneration after implantation of allogenic human umbilical cord blood-derived mesenchymal stem cells(hUCB-MSCs)with concomitant HTO.METHODS Data for patients who underwent implantation of hUCB-MSCs with concomitant HTO were evaluated.The patients included in this study were over 40 years old,had a varus deformity of more than 5°,and a full-thickness International Cartilage Repair Society(ICRS)grade IV articular cartilage lesion of more than 4 cm2 in the medial compartment of the knee.All patients underwent second-look arthroscopy during hardware removal.Cartilage regeneration was evaluated macroscopically using the ICRS grading system in second-look arthroscopy.We also assessed the effects of patient characteristics,such as trochlear lesions,age,and lesion size,using patient medical records.RESULTS A total of 125 patients were included in the study,with an average age of 58.3±6.8 years(range:43-74 years old);95(76%)were female and 30(24%)were male.The average hip-knee-ankle(HKA)angle for measuring varus deformity was 7.6°±2.4°(range:5.0-14.2°).In second-look arthroscopy,the status of medial femoral condyle(MFC)cartilage was as follows:73(58.4%)patients with ICRS grade I,37(29.6%)with ICRS grade II,and 15(12%)with ICRS grade III.No patients were staged with ICRS grade IV.Additionally,the scores[except International Knee Documentation Committee(IKDC)at 1 year]of the ICRS grade I group improved more significantly than those of the ICRS grade II and III groups.CONCLUSION Implantation of hUCB-MSCs with concomitant HTO is an effective treatment for patients with medial compartment osteoarthritis and varus deformity.Regeneration of cartilage improves the clinical outcomes for the patients. 展开更多
关键词 ALLOGENEIC Human umbilical cord blood-derived mesenchymal stem cells cartilage regeneration High tibial osteotomy Osteoarthritic knees ARTHROSCOPY
下载PDF
Mesenchymal stem cells for cartilage regeneration in dogs 被引量:1
5
作者 Akari Sasaki Mitsuru Mizuno +1 位作者 Manabu Mochizuki Ichiro Sekiya 《World Journal of Stem Cells》 SCIE CAS 2019年第5期254-269,共16页
Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, a... Articular cartilage damage and osteoarthritis (OA) are common orthopedic diseases in both humans and dogs. Once damaged, the articular cartilage seldom undergoes spontaneous repair because of its avascular, aneural, and alymphatic state, and the damage progresses to a chronic and painful situation. Dogs have distinctive characteristics compared to other laboratory animal species in that they share an OA pathology with humans. Dogs can also require treatment for naturally developed OA;therefore, effective treatment methods for OA are desired in veterinary medicine as well as in human medicine. Recently, interest has grown in regenerative medicine that includes the use of mesenchymal stem cells (MSCs). In cartilage repair, MSCs are a promising therapeutic tool due to their self-renewal capacity, ability to differentiate into cartilage, potential for trophic factor production, and capacity for immunomodulation. The MSCs from dogs (canine MSCs;cMSCs) share various characteristics with MSCs from other animal species, but they show some deviations, particularly in their differentiation ability and surface epitope expression. In vivo studies of cMSCs have demonstrated that intraarticular cMSC injection into cartilage lesions results in excellent hyaline cartilage regeneration. In clinical situations, cMSCs have shown great therapeutic effects, including amelioration of pain and lameness in dogs suffering from OA. However, some issues remain, such as a lack of regulations or guidelines and a need for unified methods for the use of cMSCs. This review summarizes what is known about cMSCs, including their in vitro characteristics, their therapeutic effects in cartilage lesion treatment in preclinical in vivo studies, their clinical efficacy for treatment of naturally developed OA in dogs, and the current limitations of cMSC studies. 展开更多
关键词 MESENCHYMAL stem cell Dog cartilage OSTEOARTHRITIS Regenerative MEDICINE VETERINARY MEDICINE
下载PDF
Induced pluripotent stem cells in cartilage repair 被引量:1
6
作者 Steven A Lietman 《World Journal of Orthopedics》 2016年第3期149-155,共7页
Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells(i PSCs) theoretically provide an unlimited number of specialized cells which could be used in articu... Articular cartilage repair techniques are challenging. Human embryonic stem cells and induced pluripotent stem cells(i PSCs) theoretically provide an unlimited number of specialized cells which could be used in articular cartilage repair. However thus far chondrocytes from iPSCs have been created primarily by viral transfection and with the use of cocultured feeder cells. In addition chondrocytes derived from i PSCs have usually been formed in condensed cell bodies(resembling embryoid bodies) that then require dissolution with consequent substantial loss of cell viability and phenotype. All of these current techniques used to derive chondrocytes from i PSCs are problematic but solutions to these problems are on the horizon. These solutions will make i PSCs a viable alternative for articular cartilage repair in the near future. 展开更多
关键词 Induced PLURIPOTENT stem cells ARTICULAR cartilage cartilage REPAIR stem cells
下载PDF
Repair of a large patellar cartilage defect using human umbilical cord blood-derived mesenchymal stem cells:A case report 被引量:2
7
作者 Jun-Seob Song Ki-Taek Hong +1 位作者 Ki Jeon Song Seok Jung Kim 《World Journal of Clinical Cases》 SCIE 2022年第34期12665-12670,共6页
BACKGROUND Patellar dislocation may cause cartilage defects of various sizes.Large defects commonly require surgical treatment;however,conventional treatments are problematic.CASE SUMMARY A 15-year-old male with a lar... BACKGROUND Patellar dislocation may cause cartilage defects of various sizes.Large defects commonly require surgical treatment;however,conventional treatments are problematic.CASE SUMMARY A 15-year-old male with a large patellar cartilage defect due to patellar dislocation was treated via human umbilical cord blood-derived mesenchymal stem cell(hUCB-MSC)implantation.To our knowledge,this is the first report of this treatment for this purpose.The patient recovered well as indicated by good visual analog scale,International Knee Documentation Committee and McMaster Universities Osteoarthritis Index scores.Magnetic resonance imaging showed cartilage regeneration 18 mo postoperatively.CONCLUSION Umbilical cord blood-derived hUCB-MSCs may be a useful treatment option for the repair of large patellar cartilage defects. 展开更多
关键词 cartilage defect Umbilical cord Mesenchymal stem cells Patellar dislocation Magnetic resonance imaging Case report
下载PDF
Chondrogenic Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells Induced by Cartilage-derived Morphogenetic Protein-2 In Vitro 被引量:11
8
作者 田洪涛 杨述华 +2 位作者 徐亮 张宇坤 许伟华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2007年第4期429-432,共4页
To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The ... To study the cartilage differentiation of mouse mesenchymal stem cells (MSCs) induced by cartilage-derived morphogenetic proteins-2 in vitro, the MSCs were isolated from mouse bone marrow and cultured in vitro. The cells in passage 3 were induced into chondrogenic differentiation with different concentrations of recombinant human cartilage-derived morphogenetic proteins-2 (0, 10, 20, 50 and 100 ng/mL). After 14 days of induction, morphology of cells was observed under phase-contrast microscope. Collagen Ⅱ mRNA and protein were examined with RT-PCR, Western blotting and immunocytochemistry respectively and the sulfate glycosaminoglycan was measured by Alcian blue staining. RT-PCR showed that CDMP-2 could promote expression of collagen Ⅱ mRNA in an dose-dependant manner, especially at the concentration of 50 ng/mL and 100 ng/mL. Immunocytochemistry and Western blotting revealed a similar change. Alcian blue staining exhibited deposition of typical cartilage extracellular matrix. Our results suggest that mouse bone marrow mesencymal stem cells can differentiate into chondrogenic phonotype with the induction of CDMP-2 in vitro, which provides a basis for further research on the role of CDMP-2 in chondrogenesis. 展开更多
关键词 cartilage-derived morphogenetic proteins-2 bone marrow mesenchymal stem cell chondrogenic differentiation MOUSE
下载PDF
Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks 被引量:1
9
作者 Gabriela S Kronemberger Renata Akemi Morais Matsui +2 位作者 Guilherme de Almeida Santos de Castro e Miranda JoséMauro Granjeiro Leandra Santos Baptista 《World Journal of Stem Cells》 SCIE 2020年第2期110-122,共13页
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters call... Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating,in vitro,tissues with more authentic properties.Cell clusters called spheroids are the basis for scaffold-free tissue engineering.In this review,we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues.Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis,and are capable of spontaneously fusing to other spheroids,making them ideal building blocks for bone and cartilage tissue engineering.Here,we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro.Overall,recent studies support the notion that spheroids are ideal"building blocks"for tissue engineering by“bottom-up”approaches,which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting.Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting. 展开更多
关键词 Adipose stromal/stem cells SPHEROIDS BUILDING-BLOCKS BOTTOM-UP Developmental tissue engineering cartilage and bone
下载PDF
Use of Mesenchymal Stem Cells to Grow Cartilage and Bone
10
作者 Hosseyn Rafei 《Journal of Cancer Therapy》 2015年第6期522-526,共5页
Regardless of the fact that bones have a tremendous capacity to be repaired, there are various clinical situations where allographs seek to enhance the regeneration of bones through promotion of osteogenesis [1]. Prec... Regardless of the fact that bones have a tremendous capacity to be repaired, there are various clinical situations where allographs seek to enhance the regeneration of bones through promotion of osteogenesis [1]. Precarious botches linked to the present grafting treatments include osteonecrosis along with restricted combination between the grafted and host tissues. It is considered that the fundamental issue with the present approaches to bone grafting is the fact that they lead to bone regeneration by means of direct osteogenesis. Therefore, it may be hypothesized that the use of cartilage in the promotion of endochondral regeneration of bones may leverage normal development and repair sequences resulting in a properly vascularized regenerate capable of integrating with the host tissues. Various tests have demonstrated that cartilage grafts are able to support the regeneration of vascularized and integrated bone tissues in vivo, while lineage tracing experiments have revealed graft derived regenerates. 展开更多
关键词 MESENCHYMAL stem cells cartilage BONE EMBRYONIC SOURCES
下载PDF
Use of bone morphogenetic proteins in mesenchymal stemcell stimulation of cartilage and bone repair 被引量:24
11
作者 Sonia Scarfì 《World Journal of Stem Cells》 SCIE CAS 2016年第1期1-12,共12页
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively partici... The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair. 展开更多
关键词 MESENCHYMAL stem cells cartilage Bonerepair BONE morphogenetic PROTEIN
下载PDF
Update on mesenchymal stem cell therapies for cartilage disorders 被引量:2
12
作者 Nikolaos K Paschos Mackenzie L Sennett 《World Journal of Orthopedics》 2017年第12期853-860,共8页
Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremend... Cartilage disorders, including focal cartilage lesions, are among the most common clinical problems in orthopedic practice. Left untreated, large focal lesions may result in progression to osteoarthritis, with tremendous impact on the quality of life of affected individuals. Current management strategies have shown only a modest degree of success, while several upcoming interventions signify better outcomes in the future. Among these, stem cell therapies have been suggested as a promising new era for cartilage disorders. Certain characteristics of the stem cells, such as their potential to differentiate but also to support healing made them a fruitful candidate for lesions in cartilage, a tissue with poor healing capacity. The aim of this editorial is to provide an update on the recent advancements in the field of stem cell therapy for the management of focal cartilage defects. Our goal is to present recent basic science advances and to present the potential of the use of stem cells in novel clinical interventions towards enhancement of the treatment armamentarium for cartilage lesions. Furthermore, we highlight some thoughts for the future of cartilage regeneration and repair and to explore future perspectives for the next steps in the field. 展开更多
关键词 stem cell cartilage CHONDRAL defect Management Bone MARROW Mesenchymal stem cells ADIPOSE
下载PDF
ISOLATION AND INDUCTION OF RABBIT BONE MARROW MESENCHYMAL STEM CELLS TO EXPRESS CHONDROCYTIC PHENOTYPE 被引量:4
13
作者 尹战海 刘淼 +3 位作者 王金堂 曹峻岭 张璟 郑钧 《Academic Journal of Xi'an Jiaotong University》 CAS 2002年第2期147-150,173,共5页
Objective To isolate rabbit bone marrow mesenchymal stem cells (MSCs), and observe the inducing effect of growth factors on MSCs to express chondrocytic phenotype. Methods MSCs were seperated from bone marrow of New Z... Objective To isolate rabbit bone marrow mesenchymal stem cells (MSCs), and observe the inducing effect of growth factors on MSCs to express chondrocytic phenotype. Methods MSCs were seperated from bone marrow of New Zealand rabbit. TGF-β 1, IGF-I, Vitamin C and dexamethasone were added into culture medium to induce proliferation and differention of MSCs. Procollagen α1(Ⅱ) mRNA in cells was detected by RT-PCR to observe the chondrogenous effect of inducing factors. ALP in culture medium was detected by automatic biochemical analyser, and lipid droplet in cells was stained by Sudan Ⅲ to clarify whether these factors given had osteogenic and adipogenic potential. Results Expression of articular cartilage specific procollagen α1 (Ⅱ)mRNA was promoted by inducing factors-TGF-β 1, IGF-I, Vitamine C and dexamethasone; elevated level of ALP in culture medium and lipid droplet in cells were also detected. Whereas ALP level was decreased and lipid stain were negative in groups without dexamethasone. Conclusion ① Expression of chondrocytic phenotype by MSCs could be induced by the synergistic action of TGF-β 1, IGF-I and Vitamine C. ② Dexmathasone had osteogenic and adipogenic potential, it should not be chosen to induce chondrogenic differention of MSCs. 展开更多
关键词 MESENCHYMAL stem cells cell culture cartilage DEXAMETHASONE
下载PDF
Molecular Tissue Engineering: Applications for Modulation of Mesenchymal Stem Cells Proliferation by Transforming Growth Factor β_1 Gene Transfer 被引量:3
14
作者 郭晓东 杜靖远 +3 位作者 郑启新 刘勇 段德宇 吴永超 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2001年第4期314-317,共4页
The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basi... The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases. 展开更多
关键词 articular cartilage defect repair tissue engineering gene transfer mesenchymal stem cells transforming growth factor β 1 molecular tissue engineering
下载PDF
Expression of Transforming Growth Factor β_(1) in Mesenchymal Stem Cells: Potential Utility in Molecular Tissue Engineering for Osteochondral Repair 被引量:5
15
作者 GUO Xiaodong DU Jingyuan +4 位作者 ZHENG Qixin YANG Shuhua LIU Yong DUAN Deyu YI Chengqing 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2002年第2期112-115,共4页
The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bo... The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bone marrow-derived mesenchymal stem cells(MSCs)in vitro.The full-length rat TGF-β_(1)cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418,a synthetic neomycin analog.The transient and stable expression of TGF-β_(1)by MSCs was detected by using immunohistochemical staining.The lipofectamine-mediated gene therapy efficiently transfected MSCs in vitro with the TGF-β_(1)gene causing a marked up-regulation in TGF-β_(1)expression as compared with the vector-transfected control groups,and the increased expression persisted for at least 4 weeks after selected with G418.It was suggested that bone marrow-derived MSCs were susceptible to in vitro lipofectamine mediated TGF-β_(1)gene transfer and that transgene expression persisted for at least 4 weeks.Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by modern gene transfer technology,an innovative concept,i.e.molecular tissue engineering,are put forward for the first time.As a new branch of tissue engineering,it represents both a new area and an important trend in research.Using this technique,we have a new powerful tool with which:(1)to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and(2)to affect a better repair of full-thickness articular cartilage defects that occur as a result of injury and osteoarthritis. 展开更多
关键词 articular cartilage defect repair tissue engineering gene transfer molecular tissue engineering transforming growth factorβ_(1) mesenchymal stem cells
下载PDF
Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits 被引量:2
16
作者 Kyungha Shin Yeseul Cha +6 位作者 Young-Hwan Ban Da Woom Seo Ehn-Kyoung Choi Dongsun Park Sung Keun Kang Jeong Chan Ra Yun-Bae Kim 《World Journal of Stem Cells》 SCIE 2019年第12期1115-1129,共15页
BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,m... BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints. 展开更多
关键词 Osteoarthritis Anterior CRUCIATE LIGAMENT TRANSECTION HUMAN ADIPOSE tissuederived mesenchymal stem cell THROMBOSPONDIN 2 Notch signaling cartilage regeneration
下载PDF
ALK5 transfection of bone marrow mesenchymal stem cells to repair osteoarthritis of knee joint 被引量:1
17
作者 Danna Cao Liang Ma +4 位作者 Xiaodong Han Lingqing Dong Mengfei Yu Bin Zhang Binbin Ying 《Bio-Design and Manufacturing》 2018年第2期135-145,共11页
Previous studies have suggested that the transforming growth factor-β receptor ALK5 is crucial for articular chondrogenesis by bone marrow mesenchymal stem cells. Here, the wild-type ALK5 plasmids were mutated by ove... Previous studies have suggested that the transforming growth factor-β receptor ALK5 is crucial for articular chondrogenesis by bone marrow mesenchymal stem cells. Here, the wild-type ALK5 plasmids were mutated by overlapping extended PCR and transfected into bone marrow mesenchymal stem cells. The knee joint osteoarthritis mouse model was constructed by cutting oft" the anterior cruciate ligament and divided into three groups: saline group, bone marrow mesenchymal stem cells and ALK5-transfected bone marrow mesenchymal stem cells group. HE staining showed that the articular cartilage lesions were more serious of saline group compared with that of mesenchymal stem cell group, and this trend was more pronounced as time goes on. Immunohistochemical staining showed that although the expression level of type II collagen in all three groups down-regulated gradually upon time, its expression in ALK5-transfected bone marrow mesenchymal stem cells group was significantly enhanced compared with the other two groups. Micro-CT also suggested that ALK5 transfection of mouse bone marrow mesenchymal stem cells would promote repairing the knee cartilage lesions with arthritis of the mice. Although the osteoarthritis mechanism underlying a variety of factors work together, and the appropriate proportion of ALKS/ALK1 was also emphasized for the treatment of osteoarthritis. This work therefore demonstrated that ALK5 transfection of bone marrow mesenchymal stem cells could be a promising stem cell therapy for repair of cartilage lesions. 展开更多
关键词 ALK5 transfection Bone marrow mesenchymal stem cell Articular cartilage lesion OSTEOARTHRITIS
下载PDF
Chondrogenic differentiation of stem cells in human umbilical cord stroma with PGA and PLLA scaffolds
18
作者 Liang Zhao Michael S. Detamore 《Journal of Biomedical Science and Engineering》 2010年第11期1041-1049,共9页
The stem cells in the umbilical cord stroma, or Wharton’s jelly, are referred to as human umbilical cord mesenchymal stromal cells (hUCMSCs) and have been shown to differentiate along a chondrogenic lineage. The aim ... The stem cells in the umbilical cord stroma, or Wharton’s jelly, are referred to as human umbilical cord mesenchymal stromal cells (hUCMSCs) and have been shown to differentiate along a chondrogenic lineage. The aim of this study was to evaluate the chondrogenic differentiation of hUCMSCs in either polyglycolic acid (PGA) or poly-L-lactic acid (PLLA) non-woven mesh scaffolds for cartilage tissue engineering. PGA is widely known to degrade faster than PLLA, and over longer time scales, and differences may be expected to emerge after extended culture periods. Therefore, the focus of this study was to evaluate differences over a shorter duration. After 21 days of culture in PLLA or PGA scaffolds, hUCMSC constructs were analyzed for biochemical content, histology, and gene expression. Overall, there were only minute differences between the two scaffold groups, with similar gene expression and biosynthesis. The most notable difference was a change in shape from cylindrical to spherical by the PGA, but not PLLA, scaffold group. The overall similar behavior of the groups may suggest that in vivo application of hUCMSC-seeded PLLA or PGA scaffolds, following a 21-day pre-culture period, may yield similar constructs at the time of implantation. However, differences may begin to become more apparent with in vivo performance following implantation, or with in vitro performance over longer time periods. 展开更多
关键词 UMBILICAL CORD stem cells cartilage Tissue Engineering SCAFFOLD
下载PDF
Effect of the gap junction blocker 1-heptanol on chondrogenic differentiation of mouse bone marrow mesenchymal stem cells in vitro
19
作者 Liu Ou-yang Yukun Zhang Shuhua Yang Shunan Ye Weihua Xu 《Journal of Nanjing Medical University》 2009年第2期117-121,共5页
Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs ... Objective:To investigate the effect of the gap junction blocker 1-heptanol on the in vitro chondrogenic differentiation of mouse bone marrow mesenchymal stem cells(MSCs) following induction by GDF-5. Methods:MSCs were isolated from mouse bone marrow and cultured in vitro. After 3 passages cells were induced to undergo chondrogenic differentiation with recombinant human GDF-5(100 ng/ml), with or without 1-heptanol(2.5 la mol/L). The effect of 1-heptanol on MSCs proliferation was investigated using the MTT assay. Type II collagen mRNA and protein were examined by RT-PCR and immunocytochemistry respectively, and the sulfate glycosaminoglycan was assessed by Alcian blue dye staining. Connexin43(Cx43) protein was examined by western blotting. Results:GDF-5 induced proliferation and chondrogenic differentiation of MSCs. While 1-heptanol treatment had no effect on this proliferation, it inhibited the expression of both type II collagen mRNA and protein. The Alcian blue staining revealed that 1-heptanol also inhibited the deposition of the typical cartilage extracellular matrix promoted by recombinant GDF-5. Western blotting demonstrated that 1-heptanol had no effect on the expression of Cx43. Conclusion:These results suggest that mouse bone marrow MSCs can be differentiated into a chondrogenic phenotype by GDF- 5 administration in vitro. While the gap junction blocker, 1-heptanol, did not reduce gap junction Cx43, these intercellular communication pathways clearly played an important functional role in GDF-5-induced cartilage differentiation. 展开更多
关键词 growth differentiation factor-5 gap junction cartilage MOUSE bone marrow mesenchymal stem cells.
下载PDF
A novel mesenchymal stem cell-targeting dual-miRNA delivery system based on aptamer-functionalized tetrahedral framework nucleic acids:Application to endogenous regeneration of articular cartilage
20
作者 Liwei Fu Jiang Wu +10 位作者 Pinxue Li Yazhe Zheng Zhichao Zhang Xun Yuan Zhengang Ding Chao Ning Xiang Sui Shuyun Liu Sirong Shi Quanyi Guo Yunfeng Lin 《Bioactive Materials》 SCIE 2024年第10期634-648,共15页
Articular cartilage injury(ACI)remains one of the key challenges in regenerative medicine,as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage.Enhancing endogenous repair via m... Articular cartilage injury(ACI)remains one of the key challenges in regenerative medicine,as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage.Enhancing endogenous repair via micro-RNAs(miRNAs)shows promise as a regenerative therapy.miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells(MSCs).In this study,we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid(tFNA)-based targeting miRNA codelivery system,named A-T-M,was used.With tFNAs as vehicles,miR-140 and miR-455 were connected to and modified on tFNAs,while Apt19S(a DNA aptamer targeting MSCs)was directly integrated into the nanocomplex.The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms.Interestingly,a synergistic effect between miR-140 and miR-455 was revealed.Furthermore,A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation.A-T-M provides a new perspective and strategy for the regeneration of articular cartilage,showing strong clinical application value in the future treatment of ACI. 展开更多
关键词 Tetrahedral framework nucleic acids miRNAs co-delivery Targeting system Articular cartilage endogenous regeneration Mesenchymal stem cells
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部