Pecan nut (Carya illinoinensis) processing to obtain oil generates circa 37% of press cake, which is currently underuti-lized and primarily employed as animal feed. Due to its nutritional- and bioactive-rich compositi...Pecan nut (Carya illinoinensis) processing to obtain oil generates circa 37% of press cake, which is currently underuti-lized and primarily employed as animal feed. Due to its nutritional- and bioactive-rich composition, pecan nut cake (PNC) can be used as raw material for plant-based beverages, whose properties may be enhanced using a non-ther-mal technology based on block freeze concentration (BFC). The effect of five-stage BFC on total solids content (TSC), pH, color parameters, retention of phytochemicals, and the antioxidant activity (AA) of a pecan nut cake beverage (PNB) was assessed in this work. BFC afforded 98% (w/w) solids retention after three stages and 85% efficiency after four stages. The process also provided a 254% concentration factor in stage 5. In the last step, approximately a 64% increase in TSC and a slight decrease (7.3%) in pH compared to the control PNB was observed. In addition, total phenolic compounds, condensed tannins, total flavonols, and AA were significantly (P < 0.05) improved after the BFC, resulting in a 2.6-10.2- and 1.9-5.8-fold increase in phytochemicals and antioxidants, respectively. On the other hand, BFC caused the darkening of concentrates due to TSC and bioactive compounds retention. The processing strategy evaluated herein indicated a great potential of PNC as a raw material for obtaining high-quality ingredients for the food industry, which may reduce agro-industrial waste production and add value to a coproduct rich in nutrients and biocompounds with potential biological activity.展开更多
基金The authors are grateful to Coordination for the Improvement of Higher Education Personnel(CAPES)for the doctoral scholarship granted to L.G.Maciel(n.88882.344928/2019-01)the postdoctoral fellowship for G.L.Teixeira(n.88882.316463/2019-01)The authors also thank the Milk Laboratory(UFSC)and the Phytopathology Laboratory(UFSC)for supporting the BFC process and spectrophotometric analysis,respectively.
文摘Pecan nut (Carya illinoinensis) processing to obtain oil generates circa 37% of press cake, which is currently underuti-lized and primarily employed as animal feed. Due to its nutritional- and bioactive-rich composition, pecan nut cake (PNC) can be used as raw material for plant-based beverages, whose properties may be enhanced using a non-ther-mal technology based on block freeze concentration (BFC). The effect of five-stage BFC on total solids content (TSC), pH, color parameters, retention of phytochemicals, and the antioxidant activity (AA) of a pecan nut cake beverage (PNB) was assessed in this work. BFC afforded 98% (w/w) solids retention after three stages and 85% efficiency after four stages. The process also provided a 254% concentration factor in stage 5. In the last step, approximately a 64% increase in TSC and a slight decrease (7.3%) in pH compared to the control PNB was observed. In addition, total phenolic compounds, condensed tannins, total flavonols, and AA were significantly (P < 0.05) improved after the BFC, resulting in a 2.6-10.2- and 1.9-5.8-fold increase in phytochemicals and antioxidants, respectively. On the other hand, BFC caused the darkening of concentrates due to TSC and bioactive compounds retention. The processing strategy evaluated herein indicated a great potential of PNC as a raw material for obtaining high-quality ingredients for the food industry, which may reduce agro-industrial waste production and add value to a coproduct rich in nutrients and biocompounds with potential biological activity.