期刊文献+
共找到661篇文章
< 1 2 34 >
每页显示 20 50 100
基于改进Cascade Faster R-CNN的铝型材表面缺陷识别研究 被引量:5
1
作者 崔亚飞 罗辉 +1 位作者 秦龙 邓慧 《机电工程技术》 2021年第11期85-90,共6页
在铝型材实际生产过程中,由于碰撞、加工温度、压力等原因,可能导致铝型材产生擦花、脏点、喷流等数种表面缺陷,缺陷目标较小,长宽大,传统目标检测算法的准确率较低,严重影响铝型材的美观和质量。在Faster R-CNN网络的基础上,引入了多... 在铝型材实际生产过程中,由于碰撞、加工温度、压力等原因,可能导致铝型材产生擦花、脏点、喷流等数种表面缺陷,缺陷目标较小,长宽大,传统目标检测算法的准确率较低,严重影响铝型材的美观和质量。在Faster R-CNN网络的基础上,引入了多阶段模型训练方法使部分无缺陷样本生成对抗样本,用ResNeXt105网络代替原始VGG16网络提取图像特征,设计了Cascade Faster R-CNN的网络结构,采用FPN提取多尺度特征图并进行特征图融合。实验结果表明,在2722张图像测试集上,Faster R-CNN模型准确率为62.7%,网络模型测试准确率达到81.4%,提高了18.7%。故相比于其他网络模型,改进后的Cascade Faster R-CNN的模型具有更强的特征提取能力和泛化能力,为类似小目标检测提高了技术参考。 展开更多
关键词 cascade faster r-cnn 铝型材 缺陷识别
下载PDF
基于改进Cascade R-CNN算法的船舶目标检测方法 被引量:1
2
作者 杨镇宇 石刘 《舰船科学技术》 北大核心 2024年第6期144-149,共6页
为了解决实际场景下船舶目标检测精度低的问题,本文在Cascade R-CNN算法的基础上,提出一种船舶目标检测方法 Boat R-CNN。Boat R-CNN使用带自注意力机制的Swin-Transformer Tiny网络提取图像特征,使用Soft-NMS非极大值抑制方法提升候选... 为了解决实际场景下船舶目标检测精度低的问题,本文在Cascade R-CNN算法的基础上,提出一种船舶目标检测方法 Boat R-CNN。Boat R-CNN使用带自注意力机制的Swin-Transformer Tiny网络提取图像特征,使用Soft-NMS非极大值抑制方法提升候选框过滤精度,使用Smooth_L1损失函数加速模型收敛并减少梯度爆炸情况,使用CIOU边界框回归损失提高候选框回归质量,并针对船舶目标的形状特征优化锚框的长宽比,提高锚框的生成质量。实验结果表明,Boat R-CNN算法的精度相比原版Cascade R-CNN算法提高了21.8%,相比主流Faster R-CNN算法提高了30.3%,有效提升了实际场景下的船舶目标检测精度。 展开更多
关键词 船舶 目标检测 深度学习 cascade r-cnn Swin Transformer
下载PDF
基于改进Cascade R-CNN的安全帽检测算法 被引量:2
3
作者 冯佩云 钱育蓉 +3 位作者 范迎迎 魏宏杨 秦雨刚 莫王昊 《微电子学与计算机》 2024年第1期63-73,共11页
针对安全帽检测中,目标形状、尺度变化大,易出现漏检、误检等问题,提出了一种基于改进级联基于区域的卷积神经网络(Cascade R-CNN)的安全帽检测算法。首先,对ResNet50进行改进形成D-ResNet50,利用可变形卷积仅增加少量参数就可增大感受... 针对安全帽检测中,目标形状、尺度变化大,易出现漏检、误检等问题,提出了一种基于改进级联基于区域的卷积神经网络(Cascade R-CNN)的安全帽检测算法。首先,对ResNet50进行改进形成D-ResNet50,利用可变形卷积仅增加少量参数就可增大感受野的特性,对特征提取网络的C2~C5卷积层进行重塑,提高网络对目标几何变换的适应能力和特征提取能力。其次,将D-ResNet50作为主干网络引入Cascade R-CNN,形成级联目标检测器,在每个阶段对正负样本重采样,抑制误检问题。再次,对递归特征金字塔进行改进,更高效地进行多尺度特征融合,并且基于反馈信息对特征进行二次处理,增强特征表达,提高网络的分类和定位能力。最后,使用Soft-非极大值抑制(Soft-NMS)进行后处理,进一步解决漏检问题。提出的方法在Hard hat workers数据集上的AP值相比检测基线提高了3.5%,与Sparse R-CNN、TridentNet、VFnet等先进算法相比分别提升了4.7%、5.9%、2.3%等。 展开更多
关键词 安全帽检测 多尺度特征融合 反馈连接 可变形卷积 cascade r-cnn CARAFE
下载PDF
基于Cascade R-CNN的乳腺钼靶肿块检测算法研究
4
作者 王立圣 李汉林 《计算机与数字工程》 2024年第4期966-972,共7页
乳腺癌生物学特性复杂,恶性程度极高,位于女性恶性肿瘤发病率首位。乳腺钼靶肿块的X射线检查是早期确诊乳腺癌的重要方式。但乳腺钼靶肿块的检测尚处于早期阶段,现有的计算机辅助检测检测精度较低。针对这一问题,论文提出了一种基于Casc... 乳腺癌生物学特性复杂,恶性程度极高,位于女性恶性肿瘤发病率首位。乳腺钼靶肿块的X射线检查是早期确诊乳腺癌的重要方式。但乳腺钼靶肿块的检测尚处于早期阶段,现有的计算机辅助检测检测精度较低。针对这一问题,论文提出了一种基于Cascade R-CNN的乳腺钼靶肿块检测方法。实验使用南佛罗里达大学的乳房X光检查数据集,将乳腺钼靶肿块分为良性和恶性两类。通过在特征网络中加入注意力模块,提取了较为丰富的乳腺钼靶肿块特征。此外,论文提出了一种新的FPN网络FA-FPN,进一步提高了乳腺钼靶肿块病灶特征的提取,解决了深层网络在下采样中特征出现稀释的问题,提高了乳腺钼靶肿块的检测准确率。经实验验证,该模型在南佛罗里达大学的乳房X光检查数据集上的mAP值达到82.9%,在AP75下表现尤为突出。该方法在乳腺钼靶肿块的检测中具有良好的性能,可以提高乳腺钼靶肿块的检测精度,并在一定程度上避免了误检和漏检。 展开更多
关键词 乳腺钼靶肿块检测 cascade r-cnn 特征提取 FPN
下载PDF
基于CSS-Cascade Mask R-CNN的有遮挡多片烟叶部位识别
5
作者 朱波 胡朋 +1 位作者 刘宇晨 张冀武 《农业工程学报》 EI CAS CSCD 北大核心 2024年第9期271-280,共10页
烟叶部位信息是进行烟叶分级的重要参考信息,准确识别烟叶部位对实现烟叶智能分级具有重要意义。在实际的烟叶智能分级应用中,为了提高分级效率,需要对多片烟叶等级进行同步识别。受现行上料方式的限制,同步识别的多片烟叶间往往存在局... 烟叶部位信息是进行烟叶分级的重要参考信息,准确识别烟叶部位对实现烟叶智能分级具有重要意义。在实际的烟叶智能分级应用中,为了提高分级效率,需要对多片烟叶等级进行同步识别。受现行上料方式的限制,同步识别的多片烟叶间往往存在局部遮挡的问题,给烟叶的目标检测和部位识别带来挑战。该研究提出一种基于改进Cascade Mask R-CNN,融合通道、非局部和空间注意力机制,并引入柔性极大值抑制检测框交并操作与斯库拉交并比损失函数(SIoU)的目标检测与识别模型(CSS-Cascade Mask R-CNN)。该模型对Cascade Mask R-CNN进行了三方面的改进:一是在其骨干网络Resent101上同时引入通道、非局部、空间3种注意力机制,使网络更加关注未被遮挡且部位特征明显区域的显著度;二是将Cascade Mask R-CNN中的损失函数SmoothL1Loss替换为SIoU损失函数,将预测框与真实框之间的方向差异引入到模型训练中提高模型检测精度;三是在筛选候选框时将常规的非极大抑制(non-max-suppression)替换为柔性非极大抑制,以避免删除候选框造成信息丢失。试验结果表明,利用提出的模型对有遮挡多片烟叶进行检测和部位识别,检测框平均准确率均值(bbox_mAP50)达到了80.2%,与改进前的Cascade Mask R-CNN模型相比提高了7.5个百分点。提出的模型与多个主流的目标检测模型(YOLOvX、YOLOv3、YOLOv5、Mask R-CNN、Cascade R-CNN)相比,分别高7.1、10.2、5.8、9.2、8.4个百分点,尤其是对较难区分的下部烟叶优势明显,因此研究结果可以为有遮挡多片烟叶部位的检测识别提供参考。 展开更多
关键词 机器视觉 烟叶部位识别 局部遮挡 cascade Mask r-cnn 非局部注意力机制
下载PDF
Group-housed pigs and their body parts detection with Cascade Faster R-CNN 被引量:1
6
作者 Deqin Xiao Sicong Lin +2 位作者 Youfu Liu Qiumei Yang Huilin Wu 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期203-209,共7页
The detection of individual pigs and their parts is a key step to realizing automatic recognition of group-housed pigs’behavior by video monitoring.However,it is still difficult to accurately locate each individual p... The detection of individual pigs and their parts is a key step to realizing automatic recognition of group-housed pigs’behavior by video monitoring.However,it is still difficult to accurately locate each individual pig and their body parts from video images of groups-housed pigs.To solve this problem,a Cascade Faster R-CNN Pig Detector(C-FRPD)was designed to detect the individual pigs and different parts of their body.Firstly,the features were extracted by 101-layers Residual Networks(ResNet-101)from video images of group-housed pigs,and the features were input into the region proposal networks(RPN)to obtain the region proposals.Then classification and bounding box regression on region proposals were performed to get the location of each pig.Finally,the body parts of the pig were determined by using the Cascade structure to search on the feature map of the pig body area.These operations completed the detection of the whole body of each pig and its different parts of the body,and established the association between the whole and parts of body in the end-to-end detection.In this study,1500 pig pen images were trained and tested.The test results showed that the detection accuracy of C-FRPD reached 98.4%.Compared with the Faster R-CNN without cascade structure,the average detection accuracy was increased by 4.3 percentage points.The average detection time of a single image was 259 ms.The method in this study could accurately detect and correlate the individual pig with its head,back,and tail in the image.This method can provide a technical reference for recognizing the behavior of group-housed pigs. 展开更多
关键词 group-housed pigs body parts detection faster r-cnn cascade structure
原文传递
基于改进Faster R-CNN的苹果采摘视觉定位与检测方法 被引量:3
7
作者 李翠明 杨柯 +1 位作者 申涛 尚拯宇 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期47-54,共8页
针对采摘机器人对场景中目标分布密集、果实相互遮挡的检测及定位能力不理想问题,提出一种引入高效通道注意力机制(ECA)和多尺度融合特征金字塔(FPN)改进Faster R-CNN果实检测及定位方法。首先,利用表达能力较强的融合FPN的残差网络ResN... 针对采摘机器人对场景中目标分布密集、果实相互遮挡的检测及定位能力不理想问题,提出一种引入高效通道注意力机制(ECA)和多尺度融合特征金字塔(FPN)改进Faster R-CNN果实检测及定位方法。首先,利用表达能力较强的融合FPN的残差网络ResNet50替换原VGG16网络,消除了网络退化问题,进而提取更加抽象和丰富的语义信息,提升模型对多尺度和小目标的检测能力;其次,引入注意力机制ECA模块,使特征提取网络聚焦特征图像的局部高效信息,减少无效目标的干扰,提升模型检测精度;最后,采用一种枝叶插图数据增强方法改进苹果数据集,解决图像数据不足问题。基于构建的数据集,使用遗传算法优化K-means++聚类生成自适应锚框,提高模型定位准确性。试验结果表明,改进模型对可抓取和不可直接抓取苹果的精度均值分别为96.16%和86.95%,平均精度均值为92.79%,较传统Faster R-CNN提升15.68个百分点;对可抓取和不可直接抓取的苹果定位精度分别为97.14%和88.93%,较传统Faster R-CNN分别提高12.53个百分点和40.49个百分点;内存占用量减少38.20%,每帧平均计算时间缩短40.7%,改进后的模型参数量小且实时性好,能够更好地应用于果实采摘机器人视觉系统。 展开更多
关键词 苹果采摘机器人 目标定位与检测 faster r-cnn 注意力机制 特征金字塔
下载PDF
基于改进Faster R-CNN的热轧带钢表面缺陷检测 被引量:1
8
作者 邓慧 曾磊 《控制工程》 CSCD 北大核心 2024年第4期752-759,共8页
热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Fas... 热轧带钢是钢铁行业的重要产品,其表面缺陷是影响产品质量的重要因素。针对传统缺陷检测算法存在的过程繁琐、精度不足和效率低下等问题,提出一种基于改进更快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)的检测算法,实现对热轧带钢表面缺陷的高效、高精度检测。首先,采用特征相加的方法对底层细节特征和高层语义特征进行融合;然后,采用精准的感兴趣区域池化(precise region of interest pooling,Precise ROI Pooling)获取固定大小的特征向量,避免特征出现位置偏差;最后,利用均值偏移聚类算法对带钢数据集进行聚类,获得适用于热轧带钢表面缺陷检测的先验框尺寸。实验结果表明,所提算法在热轧带钢表面缺陷检测数据集上的平均精度均值达到了85.34%,检测速度为23.5帧/s,且鲁棒性良好,满足实际的工业检测需求。 展开更多
关键词 表面缺陷检测 faster r-cnn 特征融合 Precise ROI Pooling 均值偏移
下载PDF
基于改进Cascade R-CNN和图像增强的夜晚鱼类检测 被引量:8
9
作者 张明华 龙腾 +3 位作者 宋巍 黄冬梅 梅海彬 贺琪 《农业机械学报》 EI CAS CSCD 北大核心 2021年第9期179-185,共7页
针对光照不均、噪声大、拍摄质量不高的夜晚水下环境,为实现夜晚水下图像中鱼类目标的快速检测,利用计算机视觉技术,提出了一种基于改进Cascade R-CNN算法和具有色彩保护的MSRCP(Multi-scale Retinex with color restoration)图像增强... 针对光照不均、噪声大、拍摄质量不高的夜晚水下环境,为实现夜晚水下图像中鱼类目标的快速检测,利用计算机视觉技术,提出了一种基于改进Cascade R-CNN算法和具有色彩保护的MSRCP(Multi-scale Retinex with color restoration)图像增强算法的夜晚水下鱼类目标检测方法。首先针对夜晚水下环境的视频数据,根据时间间隔,截取出相应的夜晚水下鱼类图像,对截取的原始图像进行MSRCP图像增强。然后采用DetNASNet主干网络进行网络训练和水下鱼类特征信息的提取,将提取出的特征信息输入到Cascade R-CNN模型中,并使用Soft-NMS候选框优化算法对其中的RPN网络进行优化,最后对夜晚水下鱼类目标进行检测。实验结果表明,该方法解决了夜晚水下环境中的图像降质、鱼类目标重叠检测问题,实现了对夜晚水下鱼类目标的快速检测,对夜晚水下鱼类图像目标检测的查准率达到95.81%,比Cascade R-CNN方法提高了11.57个百分点。 展开更多
关键词 鱼类 夜晚 目标检测 图像增强 cascade r-cnn MSRCP
下载PDF
基于改进Cascade R-CNN的输电线路多目标检测 被引量:18
10
作者 李鑫 刘帅男 +1 位作者 杨桢 王珂珂 《电子测量与仪器学报》 CSCD 北大核心 2021年第10期24-32,共9页
针对无人机巡检图像中小目标难以检测、障碍物遮挡目标、正负样本不平衡等问题,提出基于改进Cascade R-CNN的输电线路多目标检测方法。改进了Cascade R-CNN的特征提取网络,基于ResNet101基础网络结构,设计6层新型特征金字塔网络(FPN)与... 针对无人机巡检图像中小目标难以检测、障碍物遮挡目标、正负样本不平衡等问题,提出基于改进Cascade R-CNN的输电线路多目标检测方法。改进了Cascade R-CNN的特征提取网络,基于ResNet101基础网络结构,设计6层新型特征金字塔网络(FPN)与之融合,提高了对小目标、重叠目标的检测能力;引入了高斯形式的软非极大值抑制(Soft-NMS)方法,降低了受遮挡影响的目标的漏检率;利用Focal损失改进损失函数,缓解了正负样本不平衡对检测精度的影响。训练过程中,基于添加噪声、亮度变换、尺度放缩等数据增强方法扩充数据集,提升了训练模型的泛化性能。实验结果表明,改进的模型在复杂背景下能够对3种瓷质绝缘子、瓷质绝缘子缺陷、相间棒、防震锤以及鸟窝同时检测,平均精度均值(mAP)达到94.1%,为输电线路的智能巡检提供了一种新思路。 展开更多
关键词 输电线路多目标检测 cascade r-cnn 深度学习 特征融合
下载PDF
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法
11
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进faster r-cnn 改进U-Net
下载PDF
基于改进Cascade R-CNN的典型金具及其部分缺陷检测方法 被引量:25
12
作者 赵振兵 熊静 +2 位作者 李冰 王亚茹 张帅 《高电压技术》 EI CAS CSCD 北大核心 2022年第3期1060-1067,共8页
输电线路中典型金具及其缺陷的检测是非常重要的巡检任务。针对由于金具尺度变化大且部分金具为小尺度目标进而导致金具检测精确度低的问题,提出了一种基于改进级联区域卷积神经网络(cascade region convolutional neural networks,Casc... 输电线路中典型金具及其缺陷的检测是非常重要的巡检任务。针对由于金具尺度变化大且部分金具为小尺度目标进而导致金具检测精确度低的问题,提出了一种基于改进级联区域卷积神经网络(cascade region convolutional neural networks,Cascade R-CNN)的典型金具及其部分缺陷检测方法。在Cascade R-CNN模型的基础上,采用递归特征金字塔结构进行特征优化,纵向优化层级高级语义特征,横向反馈连接增益主干网络特征图;同时提出使用神经架构搜索(neural architecture search,NAS)获取空洞卷积的空洞率来扩大感受野的方式使卷积对多尺度金具特征提取更有效。实验结果证明:提出的递归特征金字塔与NAS搜索空洞率的空洞卷积相结合改进Cascade R-CNN的方法,在一定程度上解决了金具检测精确度低的问题。其中性能指标值提高了6.72%,最高检测精确度达到了92.34%。该研究为进一步对典型金具进行故障诊断,实现智能巡检奠定了良好的基础。 展开更多
关键词 递归特征金字塔 典型金具 NAS 空洞卷积 cascade r-cnn
下载PDF
基于改进Cascade R-CNN的两阶段销钉缺陷检测模型 被引量:5
13
作者 王红星 翟学锋 +3 位作者 陈玉权 黄郑 黄祥 高小伟 《科学技术与工程》 北大核心 2021年第15期6373-6379,共7页
无人机在输电线路巡检过程中会拍摄大量图片,自动识别无人机拍摄图片中存在的部件缺陷是无人机巡检的重要环节。其中销钉的缺陷由于目标较小且需要依赖上下文信息才能正确判断,识别难度较大。针对上述问题,提出了一种两阶段的销钉缺陷... 无人机在输电线路巡检过程中会拍摄大量图片,自动识别无人机拍摄图片中存在的部件缺陷是无人机巡检的重要环节。其中销钉的缺陷由于目标较小且需要依赖上下文信息才能正确判断,识别难度较大。针对上述问题,提出了一种两阶段的销钉缺陷检测模型。首先使用Faster R-CNN(regin convolutional neural networks)模型提取出原始图像中的连接部位,再对提取出的每个连接部位进行缺陷识别。缺陷识别模型使用改进的Cascade R-CNN,该模型使用层级残差卷积模块代替骨干网络中的3×3卷积并使用路径聚合特征金字塔(PAFPN)代替原始网络中的特征金字塔结构,能够有效提取图片中的多尺度特征和上下文信息。最后将级联检测器的最后一级替换为double-head检测器,减少模型误报。实验结果表明,模型对销钉缺失及销钉脱出两类缺陷的平均识别精度能够达到81.2%,与原始的Cascade R-CNN相比提升了7.8%。 展开更多
关键词 无人机巡检 销钉缺陷 目标检测 深度学习 cascade r-cnn
下载PDF
改进的Cascade R-CNN算法在目标检测上的应用 被引量:3
14
作者 张娜 包梓群 +2 位作者 罗源 吴彪 涂小妹 《电子学报》 EI CAS CSCD 北大核心 2023年第4期896-906,共11页
针对Cascade R-CNN目标检测算法中存在检测精度较低以及目标遮挡问题,本文提出一种改进的Cas-cade R-CNN网络目标检测算法.该算法在主干网络ResNet101中引入可切换空洞卷积模块(Switchable Atrous Convolu-tion,SAC),该模块主要由两个... 针对Cascade R-CNN目标检测算法中存在检测精度较低以及目标遮挡问题,本文提出一种改进的Cas-cade R-CNN网络目标检测算法.该算法在主干网络ResNet101中引入可切换空洞卷积模块(Switchable Atrous Convolu-tion,SAC),该模块主要由两个全局上下文模块以及SAC组件构成,采用SAC组件以不同的空洞卷积率对特征进行卷积,并使用Switch函数收集特征来提高特征提取能力.同时,在ResNet101残差网络中引入坐标注意力机制(Coordi-nate Attention,CA),该机制将位置信息嵌入通道注意力中,用于更好地获取方向感知和位置感知信息,进而提高目标检测精度.此外,针对目标遮挡问题,引入Repulsion Loss损失函数.该损失函数主要由吸引项和排斥项组成,吸引项使得预测框和匹配上的目标框尽可能接近,排斥项使得预测框远离错误目标,进而减少非极大值抑制(Non-Maximum Suppression,NMS)的误检,提高目标检测中遮挡问题的检测精度.实验结果表明,在公开的科大讯飞AI挑战赛数据集上,与原算法测试性能相比,改进的Cascade R-CNN网络对该数据集检出率增长了2.39%,改进算法的识别精度有一定的提高. 展开更多
关键词 cascade r-cnn 可切换空洞卷积 Repulsion Loss 目标检测 目标遮挡
下载PDF
基于改进Faster R-CNN的变电站设备外部缺陷检测
15
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 faster r-cnn 特征提取 特征融合金字塔结构 损失函数
下载PDF
优化Faster R-CNN算法的小样本缺陷检测研究
16
作者 何军红 温观发 黎长鑫 《工业仪表与自动化装置》 2024年第5期94-101,共8页
随着自动化检测技术的发展,基于深度学习的缺陷检测技术以其高精度、高效率、非接触性的特点正逐渐成为工业和学术领域的研究热点。为解决实际工业生产中由于产品缺陷数据集样本不足、类别不均衡导致的模型过拟合、检测精度低等问题,提... 随着自动化检测技术的发展,基于深度学习的缺陷检测技术以其高精度、高效率、非接触性的特点正逐渐成为工业和学术领域的研究热点。为解决实际工业生产中由于产品缺陷数据集样本不足、类别不均衡导致的模型过拟合、检测精度低等问题,提出了一种基于Faster R-CNN算法框架优化的缺陷检测模型Faster R-CNN-H-BFC,通过基于多层感知器(multi-layer perceptron,MLP)实现的幻觉网络能够从具有丰富样本的基类中学习到类共享特征并为新类生成额外的幻觉样本供模型训练,并且针对Faster R-CNN本身存在的识别精度低以及检测效果差等问题,将原始的VGG16主干网络替换为具有残差结构的ResNet50,并引入了特征金字塔网络(Feature Pyramid Networks,FPN)实现多尺度特征融合,添加混合注意力机制(Convolutional Block Attention Module,CBAM)来增强模型的特征提取能力。实验和数据表明:改进后的缺陷检测模型在极少样本场景下具有较好的检测效果,平均检测精度相较于改进前提升了3.11%。 展开更多
关键词 小样本 faster r-cnn 幻觉网络 特征金字塔网络 注意力机制 缺陷检测
下载PDF
基于改进Faster R-CNN的隧道衬砌中离散实体目标自动检测研究 被引量:4
17
作者 崔广炎 王艳辉 +3 位作者 徐杰 丁冠军 秦湘怡 任秋阳 《铁道学报》 EI CAS CSCD 北大核心 2024年第2期171-180,共10页
隧道衬砌中离散实体目标的检测精度和时效性直接关乎隧道的运营安全,采用图像视觉技术进行图像自动解译可极大提升检测效率和结果的准确性,因此基于离散实体目标的雷达图像数据构建自定义雷达数据集合,并提出一套改进的Faster R-CNN算... 隧道衬砌中离散实体目标的检测精度和时效性直接关乎隧道的运营安全,采用图像视觉技术进行图像自动解译可极大提升检测效率和结果的准确性,因此基于离散实体目标的雷达图像数据构建自定义雷达数据集合,并提出一套改进的Faster R-CNN算法对隧道衬砌中的离散实体目标进行自动检测。该算法首先对现有Faster R-CNN网络的特征提取模块进行改进,提出一套全新的轻量化特征提取网络ResNet_FMBConv对雷达图像特征进行深度挖掘;基于ResNet_FMBConv网络改进现有特征金字塔(FPN)结构,实现对多尺寸下目标的精准辨识。其次,基于实测和仿真的雷达图像数据构建离散实体目标的自定义雷达数据集合,通过几何变换方法对雷达图像进行数据增强后用于算法验证。结果表明,改进算法在IOU=0.50∶0.95情况下的检测精确率、召回率、F 1分数和FPS分别为45.1%、54.0%、49.1%和21.65 fps。在保证召回率基本持平的情况下,同比YOLOv3_spp、SSD、Retinanet和Faster R-CNN等目标检测算法的精确率和F 1分数分别提升2%~9%和1%~6%。同时,试验结果表明改进后的特征提取网络ResNet_FMBConv也优于现有Resnet-50、VGG16、Efficientnet_b0和Mobilenetv3等目标分类网络。 展开更多
关键词 离散实体目标检测 faster r-cnn ResNet_FMBConv模块 GPR 特征金字塔
下载PDF
基于Faster R-CNN的动漫场景多人物自动识别研究
18
作者 高梦 《佳木斯大学学报(自然科学版)》 CAS 2024年第3期53-57,共5页
当前动漫场景多人物识别方法在提取目标特征时,对于汇聚特征信息的滑动窗口定位不准确,所提取到的特征信息不准确,导致识别精度较差,因此为了解决这一问题,提出了一种基于Faster R-CNN的动漫场景多人物自动识别方法。标注大量动漫场景... 当前动漫场景多人物识别方法在提取目标特征时,对于汇聚特征信息的滑动窗口定位不准确,所提取到的特征信息不准确,导致识别精度较差,因此为了解决这一问题,提出了一种基于Faster R-CNN的动漫场景多人物自动识别方法。标注大量动漫场景人物形象图片,构建训练集和测试集,将其输入Faster R-CNN神经网络模型,提取图像特征并构建特征图。采用滑动窗口遍历特征图,选择特征向量评分最高的窗口,保证窗口内局部特征可以充分表示动漫人物主要特征,根据特征提取结果自动识别多个动漫人物身份,完成动漫场景多人物自动识别。实验结果表明,设计方法与两种传统方法相比,人物识别召回率分别提升了11.10%和18.99%,提高了目标识别精度,人物识别过拟合比率稳定在1.0060,说明该方法能够高精度不同类别的动漫人物,且识别过程较为稳定,识别效率较高。 展开更多
关键词 faster r-cnn模型 训练数据 测试数据 动漫场景 多人物识别 特征提取
下载PDF
多头自注意力机制的Faster R-CNN目标检测算法 被引量:2
19
作者 文靖杰 王勇 +1 位作者 李金龙 张渝 《现代电子技术》 北大核心 2024年第7期8-16,共9页
文中提出一种融合多头注意力机制、ROIAlign和Soft-NMS的FasterR-CNN目标检测算法,旨在解决原始Faster R-CNN目标检测网络中存在的检测精度低、漏检、误检的问题。首先,为了提高Faster R-CNN的感知能力,提取特征图中的重要特征并降低对... 文中提出一种融合多头注意力机制、ROIAlign和Soft-NMS的FasterR-CNN目标检测算法,旨在解决原始Faster R-CNN目标检测网络中存在的检测精度低、漏检、误检的问题。首先,为了提高Faster R-CNN的感知能力,提取特征图中的重要特征并降低对无关特征的提取,在网络中嵌入注意力机制;接着,针对共享全连接层的降维操作导致的一些区域的细节信息被忽略,造成局部信息的丢失,采用一维卷积代替共享全连接层实现权重计算的任务,以捕捉更广泛的空间信息;然后为了提供更丰富的特征表达能力,在注意力机制中引入多头机制分别对特征的不同部分进行重要性的加权;为了减少在特征提取时原图信息的丢失,使用ROI Align替换ROI Pooling算法;最后,在算法后处理中引入Soft-NMS替换传统非极大抑制(NMS)算法以减少漏检和误检情况。实验证明,改进后的Faster R-CNN目标检测网络对感兴趣目标的定位能力得到提高,漏检和误检情况减少,平均检测精度得到显著提升。 展开更多
关键词 机器视觉 目标检测 faster r-cnn ROI Align 多头注意力机制 Soft-NMS
下载PDF
井下行人检测的改进Cascade R-CNN算法 被引量:4
20
作者 袁海娣 《齐鲁工业大学学报》 2020年第3期68-73,共6页
针对井下照明情况复杂、光线不均匀、背景复杂、行人特征不明显导致基于计算机图形识别的井下行人检测效果不佳这一问题,提出一种基于改进Cascade R-CNN的井下行人检测方法,以Cascade R-CNN为基础,引入Soft-NMS替换传统NMS,充分利用Casc... 针对井下照明情况复杂、光线不均匀、背景复杂、行人特征不明显导致基于计算机图形识别的井下行人检测效果不佳这一问题,提出一种基于改进Cascade R-CNN的井下行人检测方法,以Cascade R-CNN为基础,引入Soft-NMS替换传统NMS,充分利用Cascade R-CNN的多阶段检测模型提高检测效果。实验表明:基于改进Cascade R-CNN的井下行人检测方法可有效针对井下特殊复杂情况,在井下行人数据集上获得了91.4%的检测准确率,并使用COCO检测评价矩阵评估模型对改进Cascade R-CNN算法进行了验证,相较于传统Cascade R-CNN算法平均精准度(AP)提升约2%。 展开更多
关键词 行人检测 视频监控 cascade r-cnn 深度学习
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部