针对SAR影像分类,提出了一种基于智能案例(CASE)库多时相SAR影像分类方法。该方法主要分为4部分:SAR影像预处理;智能CASE的建构;基于CASE相似度匹配的SAR影像分类;分类后处理。在智能CASE建构期间,引入时空分析技术去除“伪”CASE,从而...针对SAR影像分类,提出了一种基于智能案例(CASE)库多时相SAR影像分类方法。该方法主要分为4部分:SAR影像预处理;智能CASE的建构;基于CASE相似度匹配的SAR影像分类;分类后处理。在智能CASE建构期间,引入时空分析技术去除“伪”CASE,从而保证了CASE库中CASE信息的可靠性。接着,在基于CASE匹配的SAR影像分类过程中,采用分层相似度评价的方法,消除CASE特征相互之间的混叠效应。最后,采用面向对象的方法进行影像分类后处理。该方法有效地考虑了分类地块的形状因子,使分类结果更精确、更符合逻辑性。以2000年(4景,包含4个季度)和2004年(3景,包含3个季度)的多时相SAR影像作为实验数据,结果表明,使用我们提出的方法能达到较好的SAR影像分类结果,分类总体精度达到85%-90%,这为利用多时相SAR影像实施土地利用和变化监测(Land Use and Land Cover Change,LULC)奠定了良好基础。展开更多
The contribution of this paper is comparing three popular machine learning methods for software fault prediction. They are classification tree, neural network and case-based reasoning. First, three different classifie...The contribution of this paper is comparing three popular machine learning methods for software fault prediction. They are classification tree, neural network and case-based reasoning. First, three different classifiers are built based on these three different approaches. Second, the three different classifiers utilize the same product metrics as predictor variables to identify the fault-prone components. Third, the predicting results are compared on two aspects, how good prediction capabilities these models are, and how the models support understanding a process represented by the data.展开更多
文摘针对SAR影像分类,提出了一种基于智能案例(CASE)库多时相SAR影像分类方法。该方法主要分为4部分:SAR影像预处理;智能CASE的建构;基于CASE相似度匹配的SAR影像分类;分类后处理。在智能CASE建构期间,引入时空分析技术去除“伪”CASE,从而保证了CASE库中CASE信息的可靠性。接着,在基于CASE匹配的SAR影像分类过程中,采用分层相似度评价的方法,消除CASE特征相互之间的混叠效应。最后,采用面向对象的方法进行影像分类后处理。该方法有效地考虑了分类地块的形状因子,使分类结果更精确、更符合逻辑性。以2000年(4景,包含4个季度)和2004年(3景,包含3个季度)的多时相SAR影像作为实验数据,结果表明,使用我们提出的方法能达到较好的SAR影像分类结果,分类总体精度达到85%-90%,这为利用多时相SAR影像实施土地利用和变化监测(Land Use and Land Cover Change,LULC)奠定了良好基础。
文摘The contribution of this paper is comparing three popular machine learning methods for software fault prediction. They are classification tree, neural network and case-based reasoning. First, three different classifiers are built based on these three different approaches. Second, the three different classifiers utilize the same product metrics as predictor variables to identify the fault-prone components. Third, the predicting results are compared on two aspects, how good prediction capabilities these models are, and how the models support understanding a process represented by the data.