期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wetting Characteristics of Insect Wing Surfaces 被引量:10
1
作者 Doyoung Byun Jongin Hong +5 位作者 Saputra Jin Hwan Ko Young Jong Lee Hoon Cheol Park Bong-Kyu Byun Jennifer R.Lukes 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第1期63-70,共8页
Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investiga... Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves,which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces.We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity.After examining 10 orders and 24 species of flying Pterygotan insects,we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects.The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity,thereby enabling the wings to be cleaned more easily.And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20.In order to examine the wetting characteristics on a rough surface,a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer, which exhibits the same behavior as the insect wing,with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20. 展开更多
关键词 insect wing SUPERHYDROPHOBICITY MIMICRY hierarchical structure micro- and nano-scale structures cassie-wenzel transition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部