The effects of trace elements Cd and Sn on precipitation process of Al-Si-Cu-Mg cast alloys were investigated in the present research.It is shown that the addition of Cd and Sn not only increases remarkably the aging ...The effects of trace elements Cd and Sn on precipitation process of Al-Si-Cu-Mg cast alloys were investigated in the present research.It is shown that the addition of Cd and Sn not only increases remarkably the aging peak hardness and reduces the time to reach aging peak,but also eliminates the double-aging-peak phenomenon which appears in Al-Si-Cu-Mg alloys.In Al-Si-Cu-Mg alloys the first aging peak corresponds to GP zones(especially GPⅡ) ,and the second one is caused by metastable phases.The obvious time interval of transition from GPⅡ to metastable phases associates with the double-aging-peak phenomenon.The results of DSC and TEM show that Cd/Sn elements suppress the formation of GPⅠzone,stimulate the formation of θ",θ' and θ phases,and then shorten remarkably the temperature intervals of each exothermic peak.Because the transition interval between GPⅡzone and metastable phases is shortened by Cd/Sn in Al-Si-Cu-Mg cast alloys,θ' phase coexists with θ" phase in matrix of ageing peak condition,which causes effective hardening on the alloys,and at the same time,eliminates the double-aging-peak phenomenon.展开更多
Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined ...Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.展开更多
The characteristic of crystal growth of NdFeB cast alloys was studied. It is found that the crystal growth orientation of conventional ingots is along <410> or <411>. As the cooling rate increases, the cry...The characteristic of crystal growth of NdFeB cast alloys was studied. It is found that the crystal growth orientation of conventional ingots is along <410> or <411>. As the cooling rate increases, the crystallization orientation changes from a axis to c axis, along which the grain is easy to be magnetized. Meanwhile, by analyzing the change of crystallization orientation, the influence on the property of magnets was discussed.展开更多
The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differe...The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The results indicated that the CHSS composed of Mg2(Al,Ca) and Al2 Ca intermetallics was formed into a typical eutectic structure and no obvious change occurred when the samples were isothermally treated at 250 °C for 96 h and 350 °C for 72 h, respectively. It became a chained structure when isothermally treated at 450 °C for 48 h. The dissolution and reconstruction processes, however, were observed for the CHSS when the processing temperature was up to 550 °C. The creep life at the stress-temperature condition of 50MPa/200°C for the alloy treated at 450 °C for 48 h was as high as 510 h, and the strain at creep time of 100 h was as low as 0.03%, which indicated that the present alloy has not only a good thermal stability, but also a better heat resistance.展开更多
The relative effect of Zn addition to Mg-2%Ca based alloy on the creep and corrosion characteristics was compared with Al addition. The creep resistance of Mg-2%Ca based alloy at 175 ℃was improved by Zn addition more...The relative effect of Zn addition to Mg-2%Ca based alloy on the creep and corrosion characteristics was compared with Al addition. The creep resistance of Mg-2%Ca based alloy at 175 ℃was improved by Zn addition more significantly than by Al addition. However, the Al addition showed more effective in enhancing corrosion resistance. Since the solidification range for Zn-added alloy was considerably wide, the cautious casting design may be necessary to produce high-quality castings.展开更多
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ...Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected.展开更多
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R...The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys.展开更多
Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further impro...Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved.展开更多
Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 fr...Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.展开更多
The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.H...The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.展开更多
This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment s...This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods.展开更多
Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particle...Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.展开更多
As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys....As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.The present paper reviews the strengthening mechanisms,tensile properties and modification results of commercial high strength cast Mg alloys;as well as the development of Mg-Gd,Mg-Nd and Mg-Sn based alloys.It concludes that precipitation strengthening is the most important strengthening mechanism in high strength cast Mg alloys,which contributes more than 60%of yield strength in solution&peak-aged(T6)cast Mg alloys.For the yield strength,the alloys follow the sequence of Mg-Gd(Y)-Ag>Mg-Gd(Y)-Zn>Mg-Gd-Y/Sm/Nd>Mg-Y-Nd(WE series)>ZK61>Mg-Nd>AZ91>Mg-Sn.Mg-Gd(Y)-Ag based alloys are the strongest cast Mg alloys at present,followed by Mg-Gd(Y)-Zn based alloys.The high yield strengths of Mg-Gd(Y)-Ag and Mg-Gd(Y)-Zn cast alloys are due to the co-precipitation of basal and prismatic meta-stable phases.展开更多
Abstract: The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements, such as iron accumulated from recycled scraps. It is strongly required that coarse plate-li...Abstract: The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements, such as iron accumulated from recycled scraps. It is strongly required that coarse plate-like iron compound of β-Al5FeSi turns into harmless form without the need for applying refining additives or expensive virgin ingots. The microstructural modification of Al-7mass%Si alloy billets with different iron contents was examined by applying ultrasonic vibration during the solidification. Ultrasonically melt-treated billets were thixocast right after induction heating up to the semisolid temperature of 583 ℃, the microstructure and tensile properties were evaluated in the thixocast components. Globular primary reAl is required to fill up a thin cavity in thixocasting, so that the microstructural modification by ultrasonic melt-treatment was firstly confirmed in the billets. With ultrasonic melt-treatment in the temperature range of 630 ℃ to 605 ℃, the primary α-AI transforms itself from dendrite into fine globular in morphology. The coarse plate-like β-AIsFeSi compound becomes markedly finer compared with those in non-treated billets. Semisolid soaking up to 583 ℃, does not appreciably affect the size of β-AIsFeSi compounds; however, it affects the solid primary reAl morphology to be more globular, which is convenient for thixocasting. After thixocasting with preheated billets, eutectic silicon plates are extremely refined due to the rapid solidification arising from low casting temperature. The tensile strength of thixocast samples with different iron contents does not change much even at 2mass% of iron, when thixocast with ultrasonically melt-treated billets. However, thixocast AI-7mass%Si-2mass%Fe alloy with non-treated billets exhibits an inferior strength of 80 MPa, compared with 180 MPa with ultrasonically melt-treated billets. The elongation is also improved by about a factor of two in thixocastings with ultrasonically melt-treated billets for all iron contents of AI-7mass%Si alloys, for example, the elongation of 11% in thixocast of AI-7mass%Si-0.5mass%Fe alloy with ultrasonically melt-treated billets, 5% in that with non-treated billets.展开更多
In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in th...In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.展开更多
Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential...Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys.展开更多
High coercivity was obtained in bulk RE(Dy) Fe C(B) alloys with RE=Nd, Pr and Mm. In the as cast state, the samples show a negligible coercivity H ci . Magnetic hardening takes place when annealing the as ...High coercivity was obtained in bulk RE(Dy) Fe C(B) alloys with RE=Nd, Pr and Mm. In the as cast state, the samples show a negligible coercivity H ci . Magnetic hardening takes place when annealing the as cast alloys at around 1173 K for several hours, which produces an H ci greater than 1200 kA·m -1 . Boron appears to be very important for achieving high coercivity, which is found to increase with increasing Dy content. SEM studies show a very small grain size at around 2 μm. X ray diffraction and TEM studies reveal the existence of multiphases after annealing. They are RE 2Fe 14 (B,C), RE 2Fe 3C x , alpha Fe(RE) and RE 2Fe 17 (B,C) in order of their amounts. The carbide RE 2Fe 3C x has a complicated hexagonal structure with a =0.468 nm and c =0.795 nm.展开更多
Compact tension specimens of as-cast Al-3Zn-2Mg and Al-7Zn-2Mg (in wt pct) alloys were subjected to fracture toughness tests at room temperature according to specification5 laid down in ASTM E-399-81. It was found tha...Compact tension specimens of as-cast Al-3Zn-2Mg and Al-7Zn-2Mg (in wt pct) alloys were subjected to fracture toughness tests at room temperature according to specification5 laid down in ASTM E-399-81. It was found that increasing the Zn content, grain refinement and increasing the solidification rate lead to an increase in the fracture toughness of the material.展开更多
The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treat...The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3 h + 165°C×6 h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg_5Si_6) precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.展开更多
文摘The effects of trace elements Cd and Sn on precipitation process of Al-Si-Cu-Mg cast alloys were investigated in the present research.It is shown that the addition of Cd and Sn not only increases remarkably the aging peak hardness and reduces the time to reach aging peak,but also eliminates the double-aging-peak phenomenon which appears in Al-Si-Cu-Mg alloys.In Al-Si-Cu-Mg alloys the first aging peak corresponds to GP zones(especially GPⅡ) ,and the second one is caused by metastable phases.The obvious time interval of transition from GPⅡ to metastable phases associates with the double-aging-peak phenomenon.The results of DSC and TEM show that Cd/Sn elements suppress the formation of GPⅠzone,stimulate the formation of θ",θ' and θ phases,and then shorten remarkably the temperature intervals of each exothermic peak.Because the transition interval between GPⅡzone and metastable phases is shortened by Cd/Sn in Al-Si-Cu-Mg cast alloys,θ' phase coexists with θ" phase in matrix of ageing peak condition,which causes effective hardening on the alloys,and at the same time,eliminates the double-aging-peak phenomenon.
基金supported by the National Natural Science Foundation of China (Nos. 51674166, U1902220)the National Key R&D Program of China (No. 2021YFB3701303)。
文摘Effects of Mg content on the microstructure and mechanical properties of low Zn-containing Al−xMg−3Zn−1Cu cast alloys(x=3−5,wt.%)were investigated.As Mg content increased in the as-cast alloys,the grains were refined due to enhanced growth restriction,and the formation ofη-Mg(AlZnCu)_(2) and S-Al_(2)CuMg phases was inhibited while the formation of T-Mg_(32)(AlZnCu)_(49 )phase was promoted when Mg content exceeded 4 wt.%.The increase of Mg content encumbered the solution kinetics by increasing the size of eutectic phase but accelerated and enhanced the age-hardening through expediting precipitation kinetics and elevating the number density of the precipitates.As Mg content increased,the yield strength and tensile strength of the as-cast,solution-treated and peak-aged alloys were severally improved,while the elongation of the alloys decreased.The tensile strength and elongation of the peak-aged Al−5Mg−3Zn−1Cu alloy exceed 500 MPa and 5%,respectively.Precipitation strengthening implemented by T′precipitates is the predominant strengthening mechanism in the peak-aged alloys and is enhanced by increasing Mg content.
文摘The characteristic of crystal growth of NdFeB cast alloys was studied. It is found that the crystal growth orientation of conventional ingots is along <410> or <411>. As the cooling rate increases, the crystallization orientation changes from a axis to c axis, along which the grain is easy to be magnetized. Meanwhile, by analyzing the change of crystallization orientation, the influence on the property of magnets was discussed.
文摘The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The results indicated that the CHSS composed of Mg2(Al,Ca) and Al2 Ca intermetallics was formed into a typical eutectic structure and no obvious change occurred when the samples were isothermally treated at 250 °C for 96 h and 350 °C for 72 h, respectively. It became a chained structure when isothermally treated at 450 °C for 48 h. The dissolution and reconstruction processes, however, were observed for the CHSS when the processing temperature was up to 550 °C. The creep life at the stress-temperature condition of 50MPa/200°C for the alloy treated at 450 °C for 48 h was as high as 510 h, and the strain at creep time of 100 h was as low as 0.03%, which indicated that the present alloy has not only a good thermal stability, but also a better heat resistance.
基金supported by the National Platform R&D Program,Korea
文摘The relative effect of Zn addition to Mg-2%Ca based alloy on the creep and corrosion characteristics was compared with Al addition. The creep resistance of Mg-2%Ca based alloy at 175 ℃was improved by Zn addition more significantly than by Al addition. However, the Al addition showed more effective in enhancing corrosion resistance. Since the solidification range for Zn-added alloy was considerably wide, the cautious casting design may be necessary to produce high-quality castings.
基金financially sponsored by the National Natural Science Foundation of China(Nos.51821001 and 51871148).
文摘Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected.
基金financially supported by the National Natural Science Foundation of China(Nos.12192210 and12192214)the Independent Project of State Key Laboratory of Traction Power(No.2022TPL-T05)。
文摘The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys.
基金financially supported by the Natural Science Foundation of Guangdong Province(Nos.2021A151510042,2021A1515011728)the China Postdoctoral Science Foundation(2022M711190)+1 种基金the National Natural Science Foundation of China(No.51875211)the Key Area Research and Development Program of Guangdong Province(No.2020B010186002)。
文摘Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved.
基金supported by the National Natural Science Foundation of China(Nos.52171104,52371093,52471117 and 52225101)the National Key Research and Development Program of China(No.2021YFB3701100).
文摘Magnesium materials have attracted the attention of many researchers,and the related research is expanding.This article summarizes the advance in the research and development of magnesium materials globally in 2023 from bibliometric and scientific perspectives.More than 4680 articles on Mg and its alloys were published and indexed in the Web of Science(WoS)Core Collection database last year.The bibliometric analyses show that the traditional structural Mg alloys,functional Mg materials,and corrosion and protection of Mg alloys are still the main research focus.Therefore,this review paper mainly focuses on the research progress of Mg cast alloys,Mg wrought alloys,bio-magnesium alloys,Mg-based energy storage materials,corrosion and protection of Mg alloys in 2023.In addition,future research directions are proposed based on the challenges and obstacles identified throughout this review.
基金funded by the National Key R&D Program of China(2020YFB1710100)the National Natural Science Foundation of China(Nos.52275337,52090042,51905188).
文摘The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings.However,the efficacy of deep learning models hinges upon a substantial abundance of flaw samples.The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation.To this end,a novel approach was put forward,which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network(I-DCGAN)for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP.I-DCGAN enables the generation of high-resolution,diverse simulated images with multiple appearances,achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity.TOPSIS-IFP facilitates multi-dimensional quality evaluation,including aspects such as diversity,authenticity,image distribution difference,and image distortion degree.The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs,respectively.The TOPSIS-IFP value reaches 78.7%and 73.8%similarity to the ideal solution,respectively.Compared to single index evaluation,the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch.This approach successfully mitigates the issue of unreliable quality associated with single index evaluation.The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition,holding significant importance for enhancing the robustness of subsequent flaw recognition networks.
基金financially supported by the National Natural Science Foundation of China(Nos.52271034,51974183,and 51974184)Science and Technology Major Project of Yunnan Province(No.202302AB080020)Natural Science Foundation of Shanghai(No.22ZR1425000)。
文摘This study examined the impact of current solution treatment on the microstructure and mechanical properties of the Co-28Cr-6Mo-0.22C alloy investment castings.The findings reveal that the current solution treatment significantly promotes the dissolution of carbides at a lower temperature.The optimal conditions for solution treatment are determined as a solution temperature of 1,125°C and a holding time of 5.0 min.Under these parameters,the size and volume fraction of precipitated phases in the investment castings are measured as6.2μm and 1.1vol.%.The yield strength,ultimate tensile strength,and total elongation of the Co-28Cr-6Mo-0.22C investment castings are 535 MPa,760 MPa,and 12.6%,respectively.These values exceed those obtained with the conventional solution treatment at 1,200°C for 4.0 h.The findings suggest a phase transformation of M_(23)C_(6)→σ+C following the current solution treatment at 1,125°C for 5.0 min.In comparison,the traditional solution treatment at 1,200°C for 4.0 h leads to the formation of M_(23)C_(6)and M_(6)C carbides.It is noteworthy that the non-thermal effect of the current during the solution treatment modifies the free energy of both the matrix and precipitation phase.This modification lowers the phase transition temperature of the M_(23)C_(6)→σ+C reaction,thereby facilitating the dissolution of carbides.As a result,the current solution treatment approach achieves carbide dissolution at a lower temperature and within a significantly shorter time when compared to the traditional solution treatment methods.
基金This work was supported by the Natural Science Foundation of Liaoning Province, China under grant No. 20032007.
文摘Fatigue crack propagation (FCP) behaviors were studied to understand the role of SiC particles in 10 wt pct SiCp/A2024 composites and Si particles in casting aluminum alloy A356. The results show that a few particles appeared on the fracture surfaces in SiCp/Al composites even at high △K region, which indicates that cracks propagated predominantly within the matrix avoiding SiC particles due to the high strength of the particles and the strong particle/matrix interface. In casting aluminum alloy, Si particle debonding was more prominent.Compared with SiCp/Al composite, the casting aluminum alloy exhibited lower FCP rates, but had a slight steeper slope in the Paris region. Crack deflection and branching were found to be more remarkable in the casting aluminum alloy than that in the SiCp/Al composites, which may be contributed to higher FCP resistance in casting aluminum alloy.
基金supported by the National Natural Science Foundation of China(51201103&51304135)the Specialized Research Fund for the Doctoral Program of Higher Education(20110073120008)+2 种基金the New Century Excellent Talents in University of Ministry of Education of China(NCET-11-0329)the Program of Shanghai Subject Chief of Engineering(14XD1425000)the Assembly Pre-research Project(51312030706)
文摘As most Mg alloy products are now produced by a casting process,the development of high strength cast Mg alloys can promote their further applications and has already become one of the hot research areas of Mg alloys.The present paper reviews the strengthening mechanisms,tensile properties and modification results of commercial high strength cast Mg alloys;as well as the development of Mg-Gd,Mg-Nd and Mg-Sn based alloys.It concludes that precipitation strengthening is the most important strengthening mechanism in high strength cast Mg alloys,which contributes more than 60%of yield strength in solution&peak-aged(T6)cast Mg alloys.For the yield strength,the alloys follow the sequence of Mg-Gd(Y)-Ag>Mg-Gd(Y)-Zn>Mg-Gd-Y/Sm/Nd>Mg-Y-Nd(WE series)>ZK61>Mg-Nd>AZ91>Mg-Sn.Mg-Gd(Y)-Ag based alloys are the strongest cast Mg alloys at present,followed by Mg-Gd(Y)-Zn based alloys.The high yield strengths of Mg-Gd(Y)-Ag and Mg-Gd(Y)-Zn cast alloys are due to the co-precipitation of basal and prismatic meta-stable phases.
基金financially supported by the Grants-in Aid for Scientific Research from the Ministry of Education,Science,Sports and Culture (No.23560898)
文摘Abstract: The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements, such as iron accumulated from recycled scraps. It is strongly required that coarse plate-like iron compound of β-Al5FeSi turns into harmless form without the need for applying refining additives or expensive virgin ingots. The microstructural modification of Al-7mass%Si alloy billets with different iron contents was examined by applying ultrasonic vibration during the solidification. Ultrasonically melt-treated billets were thixocast right after induction heating up to the semisolid temperature of 583 ℃, the microstructure and tensile properties were evaluated in the thixocast components. Globular primary reAl is required to fill up a thin cavity in thixocasting, so that the microstructural modification by ultrasonic melt-treatment was firstly confirmed in the billets. With ultrasonic melt-treatment in the temperature range of 630 ℃ to 605 ℃, the primary α-AI transforms itself from dendrite into fine globular in morphology. The coarse plate-like β-AIsFeSi compound becomes markedly finer compared with those in non-treated billets. Semisolid soaking up to 583 ℃, does not appreciably affect the size of β-AIsFeSi compounds; however, it affects the solid primary reAl morphology to be more globular, which is convenient for thixocasting. After thixocasting with preheated billets, eutectic silicon plates are extremely refined due to the rapid solidification arising from low casting temperature. The tensile strength of thixocast samples with different iron contents does not change much even at 2mass% of iron, when thixocast with ultrasonically melt-treated billets. However, thixocast AI-7mass%Si-2mass%Fe alloy with non-treated billets exhibits an inferior strength of 80 MPa, compared with 180 MPa with ultrasonically melt-treated billets. The elongation is also improved by about a factor of two in thixocastings with ultrasonically melt-treated billets for all iron contents of AI-7mass%Si alloys, for example, the elongation of 11% in thixocast of AI-7mass%Si-0.5mass%Fe alloy with ultrasonically melt-treated billets, 5% in that with non-treated billets.
基金Financial supports from The National Natural Science Foundation of China(Nos.51625402,51790483,51801069 and U19A2084)are greatly acknowledgedPartial financial support came from The Science and Technology Devel-opment Program of Jilin Province(Nos.20190901010JC,20190103003JH,20200401025GX and 20200201002JC)The Changjiang Scholars Program(T2017035).
基金funded by the Natural Science Foundation of China under grant No:50771031GM Research Funding under contract No:GM-RP-07-211
文摘In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.
基金Projects(11790282,U1534204,11572267,51804202,51705344)supported by the National Natural Science Foundation of ChinaProject(E2019210292)supported by the Natural Science Foundation of Hebei Province,China+6 种基金Project(A2019210204)supported by the National Natural Science Foundation for Distinguished Young Scholars,ChinaProject(KQTD20170810160424889)supported by the Shenzhen Peacock Team Program,ChinaProject(2019DB013)supported by the Key Research Project of Southern Xinjiang,ChinaProject(C201821)supported by the High Level Talent Support Project in Hebei,ChinaProject supported by the Youth Top-notch Talents Supporting Plan of Hebei Province,ChinaProject(MCMS-E-0519G04)supported by the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,ChinaProject(201919)supported by the Open Fund of State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,China。
文摘Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys.
文摘High coercivity was obtained in bulk RE(Dy) Fe C(B) alloys with RE=Nd, Pr and Mm. In the as cast state, the samples show a negligible coercivity H ci . Magnetic hardening takes place when annealing the as cast alloys at around 1173 K for several hours, which produces an H ci greater than 1200 kA·m -1 . Boron appears to be very important for achieving high coercivity, which is found to increase with increasing Dy content. SEM studies show a very small grain size at around 2 μm. X ray diffraction and TEM studies reveal the existence of multiphases after annealing. They are RE 2Fe 14 (B,C), RE 2Fe 3C x , alpha Fe(RE) and RE 2Fe 17 (B,C) in order of their amounts. The carbide RE 2Fe 3C x has a complicated hexagonal structure with a =0.468 nm and c =0.795 nm.
文摘Compact tension specimens of as-cast Al-3Zn-2Mg and Al-7Zn-2Mg (in wt pct) alloys were subjected to fracture toughness tests at room temperature according to specification5 laid down in ASTM E-399-81. It was found that increasing the Zn content, grain refinement and increasing the solidification rate lead to an increase in the fracture toughness of the material.
基金financially supported by the Jiangsu province transformation of scientific and technological achievements program(BA2015041)the Jiangsu key laboratory for advanced metallic materials(BM2007204)
文摘The purpose of this study was to prepare high-quality Al-Si-Mg-Mn alloy with a good combination of strength and ductility employing the vacuum-assisted high-pressure die cast process. An orthogonal study of heat treatments was conducted to design an optimized T6 heat treatment process for both Al-10%Si-0.3%Mg-Mn and Al-11%Si-0.6%Mg-Mn alloys. The results demonstrate that no obvious blisters and warpage were observed in these two alloys with solid solution treatment. After the optimal T6 heat treatment of 530°C×3 h + 165°C×6 h, Al-11%Si-0.6%Mg-Mn alloy has better mechanical properties, of which tensile strength, yield strength and elongation reached 377.3 MPa, 307.8 MPa and 9%, respectively. The improvement of mechanical properties can be attributed to the high density of needle-like β″(Mg_5Si_6) precipitation after aging treatment and the fine and spherical eutectic Si particles uniformly distributed in the α-Al matrix.