The effect of Ti and Ce microalloying on the mechanical properties of Al-9Si-3.5Cu-0.2Zr-0.1Sr cast aluminum alloy was investigated,and it was hoped that the cast aluminum alloy with excellent comprehensive properties...The effect of Ti and Ce microalloying on the mechanical properties of Al-9Si-3.5Cu-0.2Zr-0.1Sr cast aluminum alloy was investigated,and it was hoped that the cast aluminum alloy with excellent comprehensive properties could be obtained.On the basis of Zr-Sr microalloyed cast aluminum alloy(Al-9Si-3.5Cu-0.2Zr-0.1Sr),the effects of 0.2Zr-0.1Sr-0.16Ti ternary microalloying and 0.2Zr-0.1Sr-0.16Ti-0.1Ce quaternary microalloying on the microstructure and properties of the alloy were investigated.The experimental results show that compared with Zr-Sr microalloying,Zr-Sr-Ti microalloying and Zr-Sr-Ti-Ce microalloying can effectively refine the microstructure,improve the modification effect of Si phase,and promote the improvement of Al_(2)Cu phase,thus improving the properties.The higher the degree of microalloying,the hardness is gradually increasing,but the electrical conductivity is gradually decreasing.Zr-Sr-Ti microalloying can increase the tensile strength of the alloy to 400.07 MPa and the elongation to 9.5%.Zr-Sr-Ti-Ce microalloying do not continue to improve the properties of the alloy,and the tensile strength and elongation after fracture decrease to a certain extent due to the addition of Ce.Therefore,the best comprehensive properties can be obtained by ZrSr-Ti microalloying(Al-9Si-3.5Cu-0.2Zr-0.1Sr-0.16Ti).展开更多
An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion f...An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture.展开更多
Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential...Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys.展开更多
The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To ch...The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To characterize the structural fatigue property,a finite element-based method is developed to compute the stress concentration factor,which is used to obtain the structural fatigue strength reduction factors.A full-scale fatigue test on the cast aluminum beam is designed and implemented for up to ten million cycles,and the corresponding finite element model of the beam is validated using the measured data of the gauges.The results show that the maximum stress concentration occurs at the fillet of the supporting seat,where the structural fatigue strength reduction factor is 2.45 and the calculated fatigue limit is 35.4 MPa.Moreover,no surface cracks are detected using the liquid penetrant test.Both the experimental and simulation results indicate that the cast aluminum beam can satisfy the service life requirements under the designed loading conditions.展开更多
The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and...The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum counter-pressure cast aluminum alloy are improved significantly.展开更多
A study of the effects of pressure on the microstructure and mechanical properties of two aluminum alloys (A1350 and A380) was carried out and subsequent analysis made. Pressure was regulated at various levels in the ...A study of the effects of pressure on the microstructure and mechanical properties of two aluminum alloys (A1350 and A380) was carried out and subsequent analysis made. Pressure was regulated at various levels in the die cast machine. Samples of both alloys were cast under varying regulated applied pressure. The mechanical properties of both alloy casts were tested and microstructure analysis done and the results compared for both alloys. The results obtained show that hardness, tensile strength, yield strength and impact strengths for both alloy cast samples followed similar pattern in the casting process. The hardness values increased with applied pressure but not too significantly in both alloy casts as pressure rose in the casting process. The yield strength of both alloy casts also increased with applied pressure. The impact strength and elongations also increased with applied pressure in both alloy casts. Also the microstructure analysis carried out on both alloy casts showed similar pattern of structural changes in the morphologies of both alloy casts as grains became fine as pressure rose from 350 to 1400 kg/cm<sup>2</sup>. Models were developed for the results and for all the models developed, a close relationship with the experimental results were underlying in view of the small errors generated by them and can be used to predict the experimental values.展开更多
Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, an...Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.展开更多
In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Pro...In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.展开更多
In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the m...In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the mould filling ability and microstructure under the mentioned method. The results show that the mould filling ability of A357 is increasing continually with the increasing of the input voltage, that is, the magnetic induction intensity. The pressure head of the molten metal increases from the lowest one at the input of the mould to the highest one at the end of the mould while in a conventional mould the pressure head depends invariably on the sprue height. Under electromagnetic die casting, the grains of A357 alloy are refined, and the pattern of eutectic silicon of alloy changes from rough plate to smooth strip.展开更多
The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous cast...The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements.展开更多
Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite...Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.展开更多
Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite d...Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.展开更多
The effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting ZL114 A alloys was studied systemically through testing and analyzing the t...The effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting ZL114 A alloys was studied systemically through testing and analyzing the tensile strength and elongation subjected to different ultrasonic powers and solidification pressures. The results indicate that the synergistic action of ultrasonic vibration and solidification pressure can result in the refinement of grains and improvement of tensile properties. Both the highest tensile strength and elongation of aluminum alloy were obtained under synergistic action of 600 W ultrasonic power and 350 kPa solidification pressure. Moreover, the tensile fracture morphology shows obvious ductile fracture characteristics. When the solidification pressure is lower than 300 kPa, the effect of ultrasonic power on tensile strength and elongation is more obvious, but when the solidification pressure is higher than 300 kPa, the effect of solidification pressure on tensile strength and elongation is greater. Meanwhile, the size and morphology of the eutectic silicon were improved significantly by the ultrasonic vibration and pressurized solidification. The strip and massive eutectic silicon phase are completely converted into small short rod-like and evenly distributed Si phases at the grain boundary of primary α-Al.展开更多
To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr...To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.展开更多
The protein based binding material is from natural products, which is nontoxic and recyclable. This kind of green binder is earnestly needed by aluminum casting products. The new protein based core possesses higher st...The protein based binding material is from natural products, which is nontoxic and recyclable. This kind of green binder is earnestly needed by aluminum casting products. The new protein based core possesses higher strength and easier shakeout. Its tensile strength is close to that of common resin sands. The micro mechanism of protein binder was investigated by using infrared spectrum, chemical element analysis, SEM and thermal lost mass analysis.展开更多
A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized ...A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized and evaluated in comparison with the die cast counterpart. Results show that the squeeze cast A380 possesses a porosity level much lower than the die cast alloy, which is disclosed by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength(UTS: 215.9 MPa) and elongation(Ef: 5.4%), for the squeeze cast samples over those of the conventional high-pressure die cast part(UTS: 173.7 MPa, Ef: 1.0%). The analysis of tensile behavior shows that the squeeze cast A380 exhibits a high tensile toughness(8.5 MJ·m-3) and resilience(179.3 k J·m-3) compared with the die cast alloy(toughness: 1.4 MJ·m-3, resilience: 140.6 k J·m-3), despite that, during the onset of plastic deformation, the strain-hardening rate of the die cast specimen is higher than that of the squeeze cast specimens. The microstructure analyzed by the scanning electron microscopy(SEM) shows that both the squeeze and die cast specimens contain the primary α-Al, Al2 Cu, Al5 Fe Si phase and the eutectic Si phase. But, the Al2 Cu phase present in the squeeze cast alloy is relatively large in size and quantity. The SEM fractography evidently reveals the ductile fracture features of the squeeze cast A380 alloy.展开更多
A mathematical model to calculate the size and distribution of microporosities was studied and coupled with a stochastic microstructure evolution model. The model incorporates various solidification phenomena such as ...A mathematical model to calculate the size and distribution of microporosities was studied and coupled with a stochastic microstructure evolution model. The model incorporates various solidification phenomena such as grain structure evolution, solidification shrinkage, interdendritic fluid flow and formation and growth of pores during solidification processes. The nucleation and growth of grains were modeled with a cellular automaton method that utilizes the results from a macro scale modeling of the solidification process. Experiments were made to validate the proposed models. The calculated results of aluminum alloy castings agreed with the experimental measurements.展开更多
基金Funded by the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China(No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The effect of Ti and Ce microalloying on the mechanical properties of Al-9Si-3.5Cu-0.2Zr-0.1Sr cast aluminum alloy was investigated,and it was hoped that the cast aluminum alloy with excellent comprehensive properties could be obtained.On the basis of Zr-Sr microalloyed cast aluminum alloy(Al-9Si-3.5Cu-0.2Zr-0.1Sr),the effects of 0.2Zr-0.1Sr-0.16Ti ternary microalloying and 0.2Zr-0.1Sr-0.16Ti-0.1Ce quaternary microalloying on the microstructure and properties of the alloy were investigated.The experimental results show that compared with Zr-Sr microalloying,Zr-Sr-Ti microalloying and Zr-Sr-Ti-Ce microalloying can effectively refine the microstructure,improve the modification effect of Si phase,and promote the improvement of Al_(2)Cu phase,thus improving the properties.The higher the degree of microalloying,the hardness is gradually increasing,but the electrical conductivity is gradually decreasing.Zr-Sr-Ti microalloying can increase the tensile strength of the alloy to 400.07 MPa and the elongation to 9.5%.Zr-Sr-Ti-Ce microalloying do not continue to improve the properties of the alloy,and the tensile strength and elongation after fracture decrease to a certain extent due to the addition of Ce.Therefore,the best comprehensive properties can be obtained by ZrSr-Ti microalloying(Al-9Si-3.5Cu-0.2Zr-0.1Sr-0.16Ti).
基金Supported by the National Natural Science Foundation of China(50775182)the Scientific Research Foundation for the Returned Scholars of the Ministry of Education of China~~
文摘An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture.
基金Projects(11790282,U1534204,11572267,51804202,51705344)supported by the National Natural Science Foundation of ChinaProject(E2019210292)supported by the Natural Science Foundation of Hebei Province,China+6 种基金Project(A2019210204)supported by the National Natural Science Foundation for Distinguished Young Scholars,ChinaProject(KQTD20170810160424889)supported by the Shenzhen Peacock Team Program,ChinaProject(2019DB013)supported by the Key Research Project of Southern Xinjiang,ChinaProject(C201821)supported by the High Level Talent Support Project in Hebei,ChinaProject supported by the Youth Top-notch Talents Supporting Plan of Hebei Province,ChinaProject(MCMS-E-0519G04)supported by the State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,ChinaProject(201919)supported by the Open Fund of State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,China。
文摘Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys.
基金Supported by the National Natural Science Foundation of China(Grant No.51475036)the International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51711530034).
文摘The cast aluminum beam is a key structure for carrying the body-hung traction motor of a high-speed train;its fatigue property is fundamental for predicting the residual life and service mileage of the structure.To characterize the structural fatigue property,a finite element-based method is developed to compute the stress concentration factor,which is used to obtain the structural fatigue strength reduction factors.A full-scale fatigue test on the cast aluminum beam is designed and implemented for up to ten million cycles,and the corresponding finite element model of the beam is validated using the measured data of the gauges.The results show that the maximum stress concentration occurs at the fillet of the supporting seat,where the structural fatigue strength reduction factor is 2.45 and the calculated fatigue limit is 35.4 MPa.Moreover,no surface cracks are detected using the liquid penetrant test.Both the experimental and simulation results indicate that the cast aluminum beam can satisfy the service life requirements under the designed loading conditions.
基金The paper is supported by the Commission of Science Technol-ogy and Industry for National Defense fund of China, Foundationitem No.:BB200300088.
文摘The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum counter-pressure cast aluminum alloy are improved significantly.
文摘A study of the effects of pressure on the microstructure and mechanical properties of two aluminum alloys (A1350 and A380) was carried out and subsequent analysis made. Pressure was regulated at various levels in the die cast machine. Samples of both alloys were cast under varying regulated applied pressure. The mechanical properties of both alloy casts were tested and microstructure analysis done and the results compared for both alloys. The results obtained show that hardness, tensile strength, yield strength and impact strengths for both alloy cast samples followed similar pattern in the casting process. The hardness values increased with applied pressure but not too significantly in both alloy casts as pressure rose in the casting process. The yield strength of both alloy casts also increased with applied pressure. The impact strength and elongations also increased with applied pressure in both alloy casts. Also the microstructure analysis carried out on both alloy casts showed similar pattern of structural changes in the morphologies of both alloy casts as grains became fine as pressure rose from 350 to 1400 kg/cm<sup>2</sup>. Models were developed for the results and for all the models developed, a close relationship with the experimental results were underlying in view of the small errors generated by them and can be used to predict the experimental values.
文摘Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.
文摘In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.
文摘In order to solve the mould filling problem of large thin walled aluminum alloy castings effectively, a new casting technology called electromagnetic die casting has been developed. Emphasis has laid on studying the mould filling ability and microstructure under the mentioned method. The results show that the mould filling ability of A357 is increasing continually with the increasing of the input voltage, that is, the magnetic induction intensity. The pressure head of the molten metal increases from the lowest one at the input of the mould to the highest one at the end of the mould while in a conventional mould the pressure head depends invariably on the sprue height. Under electromagnetic die casting, the grains of A357 alloy are refined, and the pattern of eutectic silicon of alloy changes from rough plate to smooth strip.
基金This research was supported by Major State Basic Research Projects of China, Grant No.:G1999064905 and the National Natural Science Foundation of China, No.59974009.
文摘The relationship between electromagnetic frequency and microstructures of continuous casting aluminum alloys was studied. 7075 aluminum alloy ingot of 100 mm in diameter was produced by electromagnetic continuous casting process, the microstructures of as-cast ingot was examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). The results showed that electromagnetic frequency greatly influenced segregation and microstructures of as-cast ingot, and product quality can be guaranteed by the application of a proper frequency. Electromagnetic frequency plays a significant role in solute redistribution; low frequency is more efficient for promoting solution of alloying elements.
基金Project(50564004) supported by the National Natural Science Foundation of ChinaProject(G2000067208-3) supported by the National Basic Research Program of ChinaProject(0250020) supported by the Natural Science Foundation of Jiangxi Province, China
文摘Nucleation and growth model based on Cellular Automation(CA) incorporated with macro heat transfer calculation was presented to simulate the microstructure of aluminum twin-roll casting. The dynamics model of dendrite tip (KGT model) was amended in view of characteristics of aluminum twin-roll casting. Through the numerical simulation on solidification structure under different casting speeds, it can be seen that when the casting speed is 1.3 m/min, that is, under conditions of conventional roll casting, coarse columnar grains dominate the solidification structure, and equiaxed grains exist in the center of aluminum strip. When the casting speed continuously increases to 8 m/min, that is, under the conditions of thin-gauge high-speed casting, columnar grains in solidification structure all convert into equiaxed grains. Experimental and numerical results agree well.
文摘Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.
基金financially supported by the National Natural Science Foundation of China(No.51261025)the Aerospace Science and Technology Innovation Foundation of Shanghai,China(No.SAST2016046)the Key Projects of Superior Science and Technology Innovation Team of Jiangxi,China(No.20181BCB19001)
文摘The effect of synergistic action of ultrasonic vibration and solidification pressure on tensile properties of vacuum counter-pressure casting ZL114 A alloys was studied systemically through testing and analyzing the tensile strength and elongation subjected to different ultrasonic powers and solidification pressures. The results indicate that the synergistic action of ultrasonic vibration and solidification pressure can result in the refinement of grains and improvement of tensile properties. Both the highest tensile strength and elongation of aluminum alloy were obtained under synergistic action of 600 W ultrasonic power and 350 kPa solidification pressure. Moreover, the tensile fracture morphology shows obvious ductile fracture characteristics. When the solidification pressure is lower than 300 kPa, the effect of ultrasonic power on tensile strength and elongation is more obvious, but when the solidification pressure is higher than 300 kPa, the effect of solidification pressure on tensile strength and elongation is greater. Meanwhile, the size and morphology of the eutectic silicon were improved significantly by the ultrasonic vibration and pressurized solidification. The strip and massive eutectic silicon phase are completely converted into small short rod-like and evenly distributed Si phases at the grain boundary of primary α-Al.
基金supported by the National Natural Science Foundation of China(No.51204124)the China Postdoctoral Science Foundation(No.2012M511610)the Scientific Research Foundation of Wuhan Institute of Technology(No.14125041)
文摘To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.
文摘The protein based binding material is from natural products, which is nontoxic and recyclable. This kind of green binder is earnestly needed by aluminum casting products. The new protein based core possesses higher strength and easier shakeout. Its tensile strength is close to that of common resin sands. The micro mechanism of protein binder was investigated by using infrared spectrum, chemical element analysis, SEM and thermal lost mass analysis.
基金supported by the Natural Sciences and Engineering Research Council of Canada and the University of Windsor
文摘A380 alloy with a relatively thick cross-section of 25 mm was squeeze cast using a hydraulic press with an applied pressure of 90 MPa. Microstructure and tensile properties of the squeeze cast A380 were characterized and evaluated in comparison with the die cast counterpart. Results show that the squeeze cast A380 possesses a porosity level much lower than the die cast alloy, which is disclosed by both optical microscopy and the density measurement technique. The results of tensile testing indicate the improved tensile properties, specifically ultimate tensile strength(UTS: 215.9 MPa) and elongation(Ef: 5.4%), for the squeeze cast samples over those of the conventional high-pressure die cast part(UTS: 173.7 MPa, Ef: 1.0%). The analysis of tensile behavior shows that the squeeze cast A380 exhibits a high tensile toughness(8.5 MJ·m-3) and resilience(179.3 k J·m-3) compared with the die cast alloy(toughness: 1.4 MJ·m-3, resilience: 140.6 k J·m-3), despite that, during the onset of plastic deformation, the strain-hardening rate of the die cast specimen is higher than that of the squeeze cast specimens. The microstructure analyzed by the scanning electron microscopy(SEM) shows that both the squeeze and die cast specimens contain the primary α-Al, Al2 Cu, Al5 Fe Si phase and the eutectic Si phase. But, the Al2 Cu phase present in the squeeze cast alloy is relatively large in size and quantity. The SEM fractography evidently reveals the ductile fracture features of the squeeze cast A380 alloy.
基金supported by the key project of NSFC(59990470-3)State Significant Fundamental Research Program of MOST(G2000067208-3).
文摘A mathematical model to calculate the size and distribution of microporosities was studied and coupled with a stochastic microstructure evolution model. The model incorporates various solidification phenomena such as grain structure evolution, solidification shrinkage, interdendritic fluid flow and formation and growth of pores during solidification processes. The nucleation and growth of grains were modeled with a cellular automaton method that utilizes the results from a macro scale modeling of the solidification process. Experiments were made to validate the proposed models. The calculated results of aluminum alloy castings agreed with the experimental measurements.