The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whisk...The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions.The hybrid MMC shows a higher threshold stress intensity factor range, ?Kth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ?K. In the near-threshold region with decreasing ?K, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ?K in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ?K are also observed as the local unstable fracture mechanisms.However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ?K, whereas the FCG at higher ?K is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.展开更多
A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large...A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large B4 C particles(larger than 75 μm) with no pre-heating were added to the stirred melt. Reflected-light microscopy, X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, laser particle size analysis, and image analysis using the Clemex software were performed on the cast samples for microstructural analysis and phase detection. The results revealed that as a consequence of thermal shock, B_4 C particle breakage occurred in the melt. The mechanism proposed for this phenomenon is that the exerted thermal shock in combination with the low thermal shock resistance of B_4 C and large size of the added B_4 C particles were the three key parameters responsible for B_4 C particle breakage. This breakage introduced small particles with sizes less than 10 μm and with no contamination on their surfaces into the melt. The mean particle distance measured via image analysis was approximately 60 μm. The coefficient of variation index, which was used as a measure of particle distribution homogeneity, showed some variations, indicating a relatively homogeneous distribution.展开更多
基金the Ministry of Education, Science, Sports and Culture of the Government of Japan for providing financial support during this research work
文摘The fatigue crack growth(FCG) mechanism of a cast hybrid metal matrix composite(MMC) reinforced with SiC particles and Al2O3 whiskers was investigated. For comparison, the FCG mechanisms of a cast MMC with Al2O3 whiskers and a cast Al alloy were also investigated. The results show that the FCG mechanism is observed in the near-threshold and stable-crack-growth regions.The hybrid MMC shows a higher threshold stress intensity factor range, ?Kth, than the MMC with Al2O3 and Al alloy, indicating better resistance to crack growth in a lower stress intensity factor range, ?K. In the near-threshold region with decreasing ?K, the two composite materials exhibit similar FCG mechanism that is dominated by debonding of the reinforcement–matrix interface, and followed by void nucleation and coalescence in the Al matrix. At higher ?K in the stable- or mid-crack-growth region, in addition to the debonding of the particle–matrix and whisker–matrix interface caused by cycle-by-cycle crack growth at the interface, the FCG is affected predominantly by striation formation in the Al matrix. Moreover, void nucleation and coalescence in the Al matrix and transgranular fracture of SiC particles and Al2O3 whiskers at high ?K are also observed as the local unstable fracture mechanisms.However, the FCG of the monolithic Al alloy is dominated by void nucleation and coalescence at lower ?K, whereas the FCG at higher ?K is controlled mainly by striation formation in the Al grains, and followed by void nucleation and coalescence in the Si clusters.
文摘A new method was applied to produce an Al-0.5wt%Ti-0.3wt%Zr/5vol%B_4C composite via stir casting with the aim of characterizing the microstructure of the resulting composite. For the production of the composite, large B4 C particles(larger than 75 μm) with no pre-heating were added to the stirred melt. Reflected-light microscopy, X-ray diffraction, scanning electron microscopy, field-emission scanning electron microscopy, laser particle size analysis, and image analysis using the Clemex software were performed on the cast samples for microstructural analysis and phase detection. The results revealed that as a consequence of thermal shock, B_4 C particle breakage occurred in the melt. The mechanism proposed for this phenomenon is that the exerted thermal shock in combination with the low thermal shock resistance of B_4 C and large size of the added B_4 C particles were the three key parameters responsible for B_4 C particle breakage. This breakage introduced small particles with sizes less than 10 μm and with no contamination on their surfaces into the melt. The mean particle distance measured via image analysis was approximately 60 μm. The coefficient of variation index, which was used as a measure of particle distribution homogeneity, showed some variations, indicating a relatively homogeneous distribution.