ZG0Cr26Ni5Mo3Cu3 Duplex Stainless Steel (DSS) was solution treated at 1,060 ℃ for 3 h,followed by water cooling. Tempering treatments were conducted at 720, 750 and 780 ℃, respectively, for 16 h,followed by air co...ZG0Cr26Ni5Mo3Cu3 Duplex Stainless Steel (DSS) was solution treated at 1,060 ℃ for 3 h,followed by water cooling. Tempering treatments were conducted at 720, 750 and 780 ℃, respectively, for 16 h,followed by air cooling. The microstructures of ZG0Cr26Ni5Mo3Cu3 duplex stainless steel samples treated at different tempering temperatures were observed by scanning electron microscope (SEM) and energy dispersal spectroscopy (EDS), and the phase consitutions were analyzed using X-ray diffraction (XRD). The effects of the precipitation of sigma (σ) phase on the duplex phase percentage, hardness, impact toughness and corrosion resistance of the DSS were studied. Results showed that microstructures of ZG0Cr26Ni5Mo3Cu3 after solution treatment consists of ferrite (α) phase and austenite (γ) phase; after being tempered at different temperatures,σ phase appeared due to a eutectoid-type reaction of α→σ+γ2 during tempering treatment. It was observed that σ phase distributed along the grain boundary. The volume fraction of σ and γ phases increased with increasing tempering temperature in the range of 720 to 780 oC, whereas the volume fraction of α phase showed the opposite trend. When the percentage of σ phase increased, the hardness of steel also increased. In the solution treated steel, hardness was measured to be only 244.0 HB, because σ phase did not appear. However, itincreased to 391.8 HB when the DSS was tempered at 780 oC because a great of deal of σ phase appeared. The impact toughness and corrosion resistance of DSS decreased when the percentage of σ phase increased.展开更多
The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method.Color-optical microscopy,scanning electron microscopy,energy spectrum analysis,impac...The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method.Color-optical microscopy,scanning electron microscopy,energy spectrum analysis,impact and corrosion testing were carried out to investigate characteristics of microstructure and properties of the SDSS aged at the nose temperature.The experimental results indicate that the nose temperature of precipitation is 920℃ and aging at this temperature tiny σ phases can precipitate at phase interfaces or ferrite grain boundaries within 2min.Prolonging aging duration the amount ofσ-phase increases and a dual structure with σ and γ is obtained when aging for 120min.The precipitation ofσ-phase leads to severe deterioration in impact toughness (longitudinal/transverse direction) and corrosion resistance of SDSS.展开更多
: The effect of isothermal aging treatment on the mechanical and corrosion properties of 2205 duplex stainless steel was investigated by means of impact toughness test and micro-hardness measurement in combination wi...: The effect of isothermal aging treatment on the mechanical and corrosion properties of 2205 duplex stainless steel was investigated by means of impact toughness test and micro-hardness measurement in combination with the critical pitting temperature (CPT) technique. The corresponding fractography of the steel was then observed after the impact toughness test. The results demonstrated that, at the critical temperature for precipitation of the sigma (σ) phase, e. g., 850 ℃, the impact toughness decreased rapidly and the micro-hardness increased gradually with increasing aging time. The CPT decreased from 61 to 15 ℃ as the aging time increased from 4 rain to 8 h. In addition, optical microscopy, transmission electron microscope (TEM) and X-ray diffraction studies showed that the ferrite in the steel transformed into secondary austenite and σ phase.展开更多
It is of great significance to investigate effect of multiple heat treatments on fracture property of centrifugal casting stainless steels Z3CN20.09M cut from pump casing with long-term thermal aging degradation for n...It is of great significance to investigate effect of multiple heat treatments on fracture property of centrifugal casting stainless steels Z3CN20.09M cut from pump casing with long-term thermal aging degradation for nuclear power plants to consider actual operation of nuclear power plants.Both multiple heat treatments and accelerated thermal aging experiment at the same temperature of 400℃ for different time were successively carried out on centrifugal casting stainless steels Z3CN20.09M in order to examine the metallographic modification and impact properties.Finally,an additional investigation on the related fracture properties was carried out,in which the critical initial fracture toughness Ji was determined by stretch zone width and 0.2 mm offset line methods.These results indicated that the multiple heat treatments led to the dispersed distribution of ferrite phases in austenite matrix and thus microhardness increased,but impact energy exhibited a decreasing tendency significantly.After long-term aging,the metallographic structure remained almost unchanged,but the size of ferrite phases showed a slight increasing trend because of spinodal decomposition in ferrite phases and G-phase precipitation.In addition,centrifugal casting stainless steels Z3CN20.09M with multiple heat treatments exhibited the higher microhardness,Charpy impact toughness,critical initial fracture toughness J_(IC)(J-integral determined by 0.2 mm offset line method),and J_(SZW)(J-integral determined by stretch zone width method)than those with primary heat treatment,while the specific number of the heat treatment had a low influence on fracture toughness.展开更多
基金financially supported by National Key R&D Program of China(No.2017YFB0305100)Science&Technology Research Project of Guangdong Province(No.2015B090926012+1 种基金2015A0404040232014B090907005)
文摘ZG0Cr26Ni5Mo3Cu3 Duplex Stainless Steel (DSS) was solution treated at 1,060 ℃ for 3 h,followed by water cooling. Tempering treatments were conducted at 720, 750 and 780 ℃, respectively, for 16 h,followed by air cooling. The microstructures of ZG0Cr26Ni5Mo3Cu3 duplex stainless steel samples treated at different tempering temperatures were observed by scanning electron microscope (SEM) and energy dispersal spectroscopy (EDS), and the phase consitutions were analyzed using X-ray diffraction (XRD). The effects of the precipitation of sigma (σ) phase on the duplex phase percentage, hardness, impact toughness and corrosion resistance of the DSS were studied. Results showed that microstructures of ZG0Cr26Ni5Mo3Cu3 after solution treatment consists of ferrite (α) phase and austenite (γ) phase; after being tempered at different temperatures,σ phase appeared due to a eutectoid-type reaction of α→σ+γ2 during tempering treatment. It was observed that σ phase distributed along the grain boundary. The volume fraction of σ and γ phases increased with increasing tempering temperature in the range of 720 to 780 oC, whereas the volume fraction of α phase showed the opposite trend. When the percentage of σ phase increased, the hardness of steel also increased. In the solution treated steel, hardness was measured to be only 244.0 HB, because σ phase did not appear. However, itincreased to 391.8 HB when the DSS was tempered at 780 oC because a great of deal of σ phase appeared. The impact toughness and corrosion resistance of DSS decreased when the percentage of σ phase increased.
基金Founded by the Special Project of Shaanxi Education Department(07JK309)Xi'an University of Architecture and Technology (JC0714)
文摘The nose temperature for σ-phase precipitation in super-duplex stainless steel (SDSS) UNS S32750 was evaluated by hardness method.Color-optical microscopy,scanning electron microscopy,energy spectrum analysis,impact and corrosion testing were carried out to investigate characteristics of microstructure and properties of the SDSS aged at the nose temperature.The experimental results indicate that the nose temperature of precipitation is 920℃ and aging at this temperature tiny σ phases can precipitate at phase interfaces or ferrite grain boundaries within 2min.Prolonging aging duration the amount ofσ-phase increases and a dual structure with σ and γ is obtained when aging for 120min.The precipitation ofσ-phase leads to severe deterioration in impact toughness (longitudinal/transverse direction) and corrosion resistance of SDSS.
文摘: The effect of isothermal aging treatment on the mechanical and corrosion properties of 2205 duplex stainless steel was investigated by means of impact toughness test and micro-hardness measurement in combination with the critical pitting temperature (CPT) technique. The corresponding fractography of the steel was then observed after the impact toughness test. The results demonstrated that, at the critical temperature for precipitation of the sigma (σ) phase, e. g., 850 ℃, the impact toughness decreased rapidly and the micro-hardness increased gradually with increasing aging time. The CPT decreased from 61 to 15 ℃ as the aging time increased from 4 rain to 8 h. In addition, optical microscopy, transmission electron microscope (TEM) and X-ray diffraction studies showed that the ferrite in the steel transformed into secondary austenite and σ phase.
基金supported by the National Key Research and Development Program of China(No.2017YFB0702200)the Natural Science Foundation of Jiangsu Province(No.BK20171223 and BK20170383).
文摘It is of great significance to investigate effect of multiple heat treatments on fracture property of centrifugal casting stainless steels Z3CN20.09M cut from pump casing with long-term thermal aging degradation for nuclear power plants to consider actual operation of nuclear power plants.Both multiple heat treatments and accelerated thermal aging experiment at the same temperature of 400℃ for different time were successively carried out on centrifugal casting stainless steels Z3CN20.09M in order to examine the metallographic modification and impact properties.Finally,an additional investigation on the related fracture properties was carried out,in which the critical initial fracture toughness Ji was determined by stretch zone width and 0.2 mm offset line methods.These results indicated that the multiple heat treatments led to the dispersed distribution of ferrite phases in austenite matrix and thus microhardness increased,but impact energy exhibited a decreasing tendency significantly.After long-term aging,the metallographic structure remained almost unchanged,but the size of ferrite phases showed a slight increasing trend because of spinodal decomposition in ferrite phases and G-phase precipitation.In addition,centrifugal casting stainless steels Z3CN20.09M with multiple heat treatments exhibited the higher microhardness,Charpy impact toughness,critical initial fracture toughness J_(IC)(J-integral determined by 0.2 mm offset line method),and J_(SZW)(J-integral determined by stretch zone width method)than those with primary heat treatment,while the specific number of the heat treatment had a low influence on fracture toughness.