Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also...Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.展开更多
Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applic...Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.展开更多
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmen...Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.展开更多
BACKGROUND:Previous tissue-engineered nerve studies have focused on artificial nerve and nerve cell cultures.The effects of regeneration chambers with autologous nerve bridging for the repair of nerve defects remain ...BACKGROUND:Previous tissue-engineered nerve studies have focused on artificial nerve and nerve cell cultures.The effects of regeneration chambers with autologous nerve bridging for the repair of nerve defects remain unclear.OBJECTIVE:To explore the feasibility and advantages of chitosan tube bridging autologous nerve segments for repairing 12-mm sciatic nerve defects in rats.DESIGN,TIME AND SETTING:A randomized,controlled,animal study using nerve tissue engineering was performed at the Animal Laboratory and Laboratory of Histology and Embryology,Liaoning Medical University from June 2008 to March 2009.MATERIALS:Chitosan powder was purchased from Jinan Haidebei Marine Bioengineering,China.METHODS:A sciatic nerve segment of approximately 8 mm was excised from the posterior margin of the piriformis muscle of Sprague Dawley rats.The two nerve ends shrank to form a 12-mm defect,and the nerve defect was repaired using a chitosan tube bridging autologous nerve segment (bridge group),a chitosan tube-encapsulated autologous nerve segment (encapsulation group),and a chitosan tube alone (chitosan tube alone group),respectively.MAIN OUTCOME MEASURES:Histological and ultrastructural changes of the injured sciatic nerve;number of regenerated myelinated nerve fibers; nerve conduction velocity; leg muscle atrophy; and sciatic nerve functional index.RESULTS:At 4 months after implantation,the chitosan tube was absorbed.The tube was thin,but maintained the original shape,and vascular proliferation was observed around the tube.In the bridge group,regenerative myelinated nerve fibers were thick and orderly,with a thick myelin sheath and intact axonal structure.The number of myelinated nerve fibers and nerve conduction velocity were significantly greater compared with the other groups (P〈 0.01).Moreover,nerve and muscle function was significantly improved following chitosan tube bridging autologous nerve segment treatment compared with the other groups (P〈 0.05 or P 〈 0.01).CONCLUSION:Chitosan tube bridging autologous nerve segments exhibited better repair effects on nerve defects compared with chitosan tubeencapsulated autologous nerve segments and a chitosan tube alone.This method provided a simple and effective treatment for long-segmental nerve defects.展开更多
The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ ass...The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.展开更多
Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analys...Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analysis for an original segment of a real box girder bridge with the finite element software ANSYS. Two representative exothermic rate models are used to describe the heat- releasing process caused by the cement hydration in concrete. The exothermic rate model that conforms to reality more closely is recognized by comparing the simulation results with the data gathered from the optical fiber temperature sensors pre-embedded in the original segment. The air temperature and wind velocity that constitute thermal boundary conditions are determined in the light of the local meteorological department and correlative research achievements of recent years. Moreover, the consideration for the steel formwork acting as a barrier to heat loss is also proved to be beneficial to improve the simulation effect.展开更多
In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric s...In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric scale ratio of 1:5,five specimens were fabricated,including four precast bridge columns connected with GCMD and one cast-in-place(CIP)bridge column.A finite element analysis model was also established by using OpenSees and was then calibrated by using the experimental results for parameter analysis.The results show the biaxial seismic performance of the precast bridge columns connected with GCMD was similar to the CIP bridge columns regarding ultimate bearing capacity and hysteresis energy,and further,that it could meet the design goal of equivalent performance.The seismic performance of the precast bridge columns connected with GCMD deteriorated more significantly under bi-directional load than under uni-directional load.A proper slenderness ratio(e.g.,7.0-10.0)and longitudinal reinforcement ratio could significantly improve the energy dissipation capacity and deformation capacity of the precast bridge columns,while the axial load ratio and concrete strength had little influence on the above properties.The research results could bring insights to the development of the seismic design of precast bridge columns connected with GCMD.展开更多
Proximal and distal nerve defects exhibit chemotactic growth over certain distances. Our previous studies demonstrated that Schwann cells survive in autologous nerve segments that are bridged by regeneration chambers ...Proximal and distal nerve defects exhibit chemotactic growth over certain distances. Our previous studies demonstrated that Schwann cells survive in autologous nerve segments that are bridged by regeneration chambers and secrete various bioactive substances. However, more data are required to determine the required length of regeneration chambers for chemotaxis and nutrition of neural regeneration, as well as the length of repaired nerve defects to replace the effect of autologous nerve grafting. In the present study, sciatic nerve defects of 12, 16, 20 mm were repaired using a regeneration chamber of 6, 8, and 10 mm in length respectively. These were bridged with autologous nerve segments. Results showed that the bridging of two 6-mm long regeneration chambers to repair a 12-mm nerve defect exhibited similar effects to autologous nerve grafting.展开更多
Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force mea...Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.展开更多
Considering the wide application of precast segmental bridge columns(PSBCs)in engineering practice,impact-resistant performance has gained significant attention.However,few studies have focused on PSBCs subjected to h...Considering the wide application of precast segmental bridge columns(PSBCs)in engineering practice,impact-resistant performance has gained significant attention.However,few studies have focused on PSBCs subjected to high-energy impacts caused by heavy truck collisions.Therefore,the behavior of PSBCs under a heavy truck impact was investigated in this study using high-fidelity finite element(FE)models.The detailed FE modeling methods of the PSBCs and heavy trucks were validated against experimental tests.The validated modeling methods were employed to simulate collisions between PSBCs and heavy trucks.The simulation results demonstrated that the engine and cargo caused two major peak impact forces during collision.Subsequently,the impact force,failure mode,displacement,and internal force of the PSBCs under heavy truck impacts were scrutinized.An extensive study was performed to assess the influence of the section size,truck weight,impact velocity,and number of precast segments on the impact responses.The truck weight was found to have a minor effect on the engine impact force.Damage was found to be localized at the bottom of the three segments,with the top remaining primarily undamaged.This parametric study demonstrated that larger cross-sections may be a preferred option to protect PSBCs against the impact of heavy trucks.展开更多
为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(...为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(socket with ultra-high performance concrete,SU)和结合套筒连接钢筋的新型承插(grouting sleeve and socket with ultra-high performance concrete,GSU)连接拼装桥墩的损伤机理和滞回性能,结合有限元模型重点讨论了承插口深度对滞回性能的影响。结果表明:4个构件的破坏模式都是以受弯破坏为主的弯扭破坏,其中SU构件出现了轻微拔起的现象,而对应的GSU构件并未出现该现象,与RC构件接近;各构件的剪力-墩顶位移骨架发展趋势比较一致,由于GSU构件纵向钢筋连续,具有更好的整体性能,其抗弯承载力与RC构件接近,且明显大于SU和GS构件,4个构件弯曲滞回耗能较为接近;承插口深度为1.0倍截面宽度的GSU构件抗扭承载力略高于RC构件,且明显大于其余装配式墩,GSU构件的扭转刚度、延性系数和耗能能力均大于其他3个墩;当承插口深度采用0.5倍构件截面宽度时,新型承插GSU构件的抗弯和抗扭承载力均略高于整体现浇构件,具有良好的抵抗压弯扭荷载的能力,可以实现浅承插口连接。研究结果可为压弯扭复合作用下装配式墩的应用提供试验依据。展开更多
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
基金National Natural Science Foundation of China(Nos.42071372,42221002)。
文摘Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and geographic information science.There are not only the measuring errors of the endpoints but also the modeling errors between the line segments and the actual geographical features.This paper presents a Brownian bridge error model for line segments combining both the modeling and measuring errors.First,the Brownian bridge is used to establish the position distribution of the actual geographic feature represented by the line segment.Second,an error propagation model with the constraints of the measuring error distribution of the endpoints is proposed.Third,a comprehensive error band of the line segment is constructed,wherein both the modeling and measuring errors are contained.The proposed error model can be used to evaluate line segments’overall accuracy and trustability influenced by modeling and measuring errors,and provides a comprehensive quality indicator for the geospatial data.
基金National Natural Science Foundation of China under Grant Nos.U1434205 and 51678490the Major Research Plan of China National Railway Ministry of China under Grant Nos.2015G002-B and P2018G007the National Key R&D Program of China under Grant No.2017YFC1500803。
文摘Precast segmental column bridges exhibit various construction advantages in comparison to traditional monolithic column bridges.However,the lack of cognitions on seismic behaviors has seriously restricted their applications and developments.In this paper,comprehensive investigations are conducted to analyze the dynamic characteristics of precast segmental column bridges under near-fault,forward-directivity ground motions.First,the finite-element models of two comparable bridges with precast segmental columns and monolithic columns are constructed by using OpenSees software,and the nonlinearities of the bridges are considered.Next,three different earthquake loadings are meticulously set up to handle engineering problems,namely recorded near-and far-field ground motions,parameterized pulses,and pulse and residual components extracted from real records.Finally,based on the models and earthquake sets,extensive explorations are carried out.The results show that near-fault forward-directivity ground motions are more threatening than far-field ones;precast segmental column bridges may suffer more pounding impacts than monolithic bridges;the“narrow band”effect caused by near-fault,forward-directivity ground motions may occur in bridges with shorter periods than pulse periods;and pulse and residual components play different roles in seismic responses.
文摘Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research results were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.
文摘BACKGROUND:Previous tissue-engineered nerve studies have focused on artificial nerve and nerve cell cultures.The effects of regeneration chambers with autologous nerve bridging for the repair of nerve defects remain unclear.OBJECTIVE:To explore the feasibility and advantages of chitosan tube bridging autologous nerve segments for repairing 12-mm sciatic nerve defects in rats.DESIGN,TIME AND SETTING:A randomized,controlled,animal study using nerve tissue engineering was performed at the Animal Laboratory and Laboratory of Histology and Embryology,Liaoning Medical University from June 2008 to March 2009.MATERIALS:Chitosan powder was purchased from Jinan Haidebei Marine Bioengineering,China.METHODS:A sciatic nerve segment of approximately 8 mm was excised from the posterior margin of the piriformis muscle of Sprague Dawley rats.The two nerve ends shrank to form a 12-mm defect,and the nerve defect was repaired using a chitosan tube bridging autologous nerve segment (bridge group),a chitosan tube-encapsulated autologous nerve segment (encapsulation group),and a chitosan tube alone (chitosan tube alone group),respectively.MAIN OUTCOME MEASURES:Histological and ultrastructural changes of the injured sciatic nerve;number of regenerated myelinated nerve fibers; nerve conduction velocity; leg muscle atrophy; and sciatic nerve functional index.RESULTS:At 4 months after implantation,the chitosan tube was absorbed.The tube was thin,but maintained the original shape,and vascular proliferation was observed around the tube.In the bridge group,regenerative myelinated nerve fibers were thick and orderly,with a thick myelin sheath and intact axonal structure.The number of myelinated nerve fibers and nerve conduction velocity were significantly greater compared with the other groups (P〈 0.01).Moreover,nerve and muscle function was significantly improved following chitosan tube bridging autologous nerve segment treatment compared with the other groups (P〈 0.05 or P 〈 0.01).CONCLUSION:Chitosan tube bridging autologous nerve segments exhibited better repair effects on nerve defects compared with chitosan tubeencapsulated autologous nerve segments and a chitosan tube alone.This method provided a simple and effective treatment for long-segmental nerve defects.
文摘The paper summarizes the four different construction schemes based on engineering cases for the arch rib construction of continuous beam-arch composite bridges for high-speed railways.These methods include in-situ assembly,segmental lifting,incremental launching and longitudinal moving,and vertical rotation.The temporary structural designs,process methods,and technological equipment for each construction scheme are described in detail.The advantages and disadvantages of each scheme and its application scope under various conditions are analyzed,and opinions and suggestions for guiding the application of each scheme are proposed.The comparison and selection analyses show that the four arch rib construction schemes have certain applicability under different conditions such as bridge site status,bridge span,and construction environment.With the continuous increase of bridge span and progress of construction technological equipment,the arch rib construction technology is developing towards the overall erection direction.This leads to more obvious technical advantages of the segmental lifting method,incremental launching and longitudinal moving method,and vertical rotation method.Therefore,it is necessary to select the best construction scheme according to the construction status and technical conditions during application.
基金The Soft Science Foundation of Ministry of Construction of China (No.06-k3-14)
文摘Temperature field and its variation with time are necessary for analyzing the thermo-mechanical performance of mass concrete structures at their early ages. This paper carries out a temperature field simulation analysis for an original segment of a real box girder bridge with the finite element software ANSYS. Two representative exothermic rate models are used to describe the heat- releasing process caused by the cement hydration in concrete. The exothermic rate model that conforms to reality more closely is recognized by comparing the simulation results with the data gathered from the optical fiber temperature sensors pre-embedded in the original segment. The air temperature and wind velocity that constitute thermal boundary conditions are determined in the light of the local meteorological department and correlative research achievements of recent years. Moreover, the consideration for the steel formwork acting as a barrier to heat loss is also proved to be beneficial to improve the simulation effect.
基金National Natural Science Foundation of China under Grant No.51408360the Natural Science Foundation of Fujian(NSFF)under Grant No.2020J01477the Technology Project of Fuzhou Science and Technology Bureau(TPFB)under Grant No.2020-GX-18。
文摘In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric scale ratio of 1:5,five specimens were fabricated,including four precast bridge columns connected with GCMD and one cast-in-place(CIP)bridge column.A finite element analysis model was also established by using OpenSees and was then calibrated by using the experimental results for parameter analysis.The results show the biaxial seismic performance of the precast bridge columns connected with GCMD was similar to the CIP bridge columns regarding ultimate bearing capacity and hysteresis energy,and further,that it could meet the design goal of equivalent performance.The seismic performance of the precast bridge columns connected with GCMD deteriorated more significantly under bi-directional load than under uni-directional load.A proper slenderness ratio(e.g.,7.0-10.0)and longitudinal reinforcement ratio could significantly improve the energy dissipation capacity and deformation capacity of the precast bridge columns,while the axial load ratio and concrete strength had little influence on the above properties.The research results could bring insights to the development of the seismic design of precast bridge columns connected with GCMD.
基金the Key Scientific Research Program of Medial Peak Construction Project of Liaoning Province,No.200914
文摘Proximal and distal nerve defects exhibit chemotactic growth over certain distances. Our previous studies demonstrated that Schwann cells survive in autologous nerve segments that are bridged by regeneration chambers and secrete various bioactive substances. However, more data are required to determine the required length of regeneration chambers for chemotaxis and nutrition of neural regeneration, as well as the length of repaired nerve defects to replace the effect of autologous nerve grafting. In the present study, sciatic nerve defects of 12, 16, 20 mm were repaired using a regeneration chamber of 6, 8, and 10 mm in length respectively. These were bridged with autologous nerve segments. Results showed that the bridging of two 6-mm long regeneration chambers to repair a 12-mm nerve defect exhibited similar effects to autologous nerve grafting.
基金National Science and Technology Support Program of China ( No. 2009BAG15B01)Key Pro-grams for Science and Technology Development of Chinese Transportation Industry ( No. 2008-353-332-190 )National Science Foundation( No. 51008233)
文摘Segment sectional model tests are carried out to investigate the wind loading on middle pylon of Taizhou Bridge, which has complicated three-dimensional flow due to its feature of double columns. Through the force measuring tests, aerodynamic force coefficients of every segment of the pylon columns have been obtained. It is found that the tested aerodynamic force coefficients are much smaller than those given by codes. The interference effects of aerodynamic force coefficients between columns of pylon are discussed. The results show that the interference effect is the most evident when the yaw angle is about 30 ° from transverse direction. This kind of interference effect can be described as diminutions in transverse aerodynamic force coefficients and magnifications in longitudinal aerodynamic force coefficients of downstream columns.
基金The authors would like to acknowledge the financial support received from the National Natural Science Foundation of China(Grant Nos.52278188 and 51978258)Natural Science Foundation of the Jiangsu Province(No.BK20211196)+1 种基金Chongqing Natural Science Foundation(CSTB2022NSCQ-MSX0969)the SOAR fellowship from the University of Sydney.
文摘Considering the wide application of precast segmental bridge columns(PSBCs)in engineering practice,impact-resistant performance has gained significant attention.However,few studies have focused on PSBCs subjected to high-energy impacts caused by heavy truck collisions.Therefore,the behavior of PSBCs under a heavy truck impact was investigated in this study using high-fidelity finite element(FE)models.The detailed FE modeling methods of the PSBCs and heavy trucks were validated against experimental tests.The validated modeling methods were employed to simulate collisions between PSBCs and heavy trucks.The simulation results demonstrated that the engine and cargo caused two major peak impact forces during collision.Subsequently,the impact force,failure mode,displacement,and internal force of the PSBCs under heavy truck impacts were scrutinized.An extensive study was performed to assess the influence of the section size,truck weight,impact velocity,and number of precast segments on the impact responses.The truck weight was found to have a minor effect on the engine impact force.Damage was found to be localized at the bottom of the three segments,with the top remaining primarily undamaged.This parametric study demonstrated that larger cross-sections may be a preferred option to protect PSBCs against the impact of heavy trucks.
文摘为明确并提升承插式拼装桥墩抵抗压弯扭等复合荷载的能力,提出了一种结合灌浆套筒和承插口组合连接的新型承插装配式墩,通过复合荷载作用下的拟静力试验对比了现浇(reinforced concrete,RC)、灌浆套筒(grouting and sleeve,GS)、承插口(socket with ultra-high performance concrete,SU)和结合套筒连接钢筋的新型承插(grouting sleeve and socket with ultra-high performance concrete,GSU)连接拼装桥墩的损伤机理和滞回性能,结合有限元模型重点讨论了承插口深度对滞回性能的影响。结果表明:4个构件的破坏模式都是以受弯破坏为主的弯扭破坏,其中SU构件出现了轻微拔起的现象,而对应的GSU构件并未出现该现象,与RC构件接近;各构件的剪力-墩顶位移骨架发展趋势比较一致,由于GSU构件纵向钢筋连续,具有更好的整体性能,其抗弯承载力与RC构件接近,且明显大于SU和GS构件,4个构件弯曲滞回耗能较为接近;承插口深度为1.0倍截面宽度的GSU构件抗扭承载力略高于RC构件,且明显大于其余装配式墩,GSU构件的扭转刚度、延性系数和耗能能力均大于其他3个墩;当承插口深度采用0.5倍构件截面宽度时,新型承插GSU构件的抗弯和抗扭承载力均略高于整体现浇构件,具有良好的抵抗压弯扭荷载的能力,可以实现浅承插口连接。研究结果可为压弯扭复合作用下装配式墩的应用提供试验依据。