期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Cu addition on overaging behaviour,room and high temperature tensile and fatigue properties of A357 alloy 被引量:2
1
作者 Lorella CESCHINI Simone MESSIERI +3 位作者 Alessandro MORRI Salem SEIFEDDINE Stefania TOSCHI Mohammadreza ZAMANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2861-2878,共18页
The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at... The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at 200℃,and to correlate the mechanical performance with its microstructure,in particular with the secondary dendrite arm spacing(SDAS).The mechanical tests carried out on the overaged alloy at 200℃ indicate that the addition of about 1.3 wt.%Cu to the A357 alloy enables to maintain ultimate tensile strength and yield strength values close to 210 and 200 MPa,respectively,and fatigue strength at about 100 MPa.Compared to the quaternary(Al−Si−Cu−Mg)alloy C355,the A357−Cu alloy has greater mechanical properties at room temperature and comparable mechanical behaviour in the overaged condition at 200℃.The microstructural analyses highlight that SDAS affects the mechanical behaviour of the peak-aged A357−Cu alloy at room temperature,while its influence is negligible on the tensile and fatigue properties of the overaged alloy at 200℃. 展开更多
关键词 A357 alloy C355 alloy al−Si−cu−Mg casting alloy tensile property fatigue behaviour high temperature overaging
下载PDF
Effects of Solution Treatment on the Microstructure,Tensile Properties,and Impact Toughness of an Al–5.0Mg–3.0Zn–1.0Cu Cast Alloy 被引量:4
2
作者 Hua-Ping Tang Qu-Dong Wang +6 位作者 Colin Luo Chuan Lei Tian-Wen Liu Zhong-Yang Li Kui Wang Hai-Yan Jiang Wen-Jiang Ding 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第1期98-110,共13页
This study investigates the eff ect of solution treatment(at 470°C for 0–48 h)on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%)alloy prepared by permane... This study investigates the eff ect of solution treatment(at 470°C for 0–48 h)on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%)alloy prepared by permanent gravity casting.The results show that the as-cast microstructure consists ofα-Al dendrites and a network-like pattern of T-Mg32(AlZnCu)49 phases.Most of the T-phases were dissolved within 24 h at 470℃;and a further prolonging of solution time resulted in a rapid growth ofα-Al grains.No transformation from the T-phase to the S-Al2CuMg phase was discovered in this alloy.Both the tensile properties and impact toughness increased quickly,reached a maximum peak value,and decreased gradually as the solution treatment proceeded.The impact toughness is more closely related to the elongation,and the relationship between impact toughness and elongation appears to obey an equation:IT=8.43 EL-3.46.After optimal solution treatment at 470℃for 24 h,this alloy exhibits excellent mechanical properties with the ultimate tensile strength,yield strength,elongation and impact toughness being 431.6 MPa,270.1 MPa,19.4%and 154.7 kJ/m^(2),which are comparable to that of a wrought Al–6.0 Mg–0.7 Mn alloy(5E06,a 5 xxx aluminum alloy).Due to its excellent comprehensive combination of mechanical properties,this cast alloy has high potential for use in components which require medium strength,high ductility and high toughness. 展开更多
关键词 al–Mg–Zn–cu cast alloys T-Mg32(alZn)49 PHASE S-al2cuMg phase Impact toughness MECHANICal properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部