A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer...The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.展开更多
A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The resul...A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.展开更多
The latest progress on the study of numerical simulation of mold filling and solidification process of shaped casting is reviewed. In mold filling process simulation of castings, the SOLA VOF algorithmis is improve...The latest progress on the study of numerical simulation of mold filling and solidification process of shaped casting is reviewed. In mold filling process simulation of castings, the SOLA VOF algorithmis is improved in efficient free surface treatment and turbulence consideration, and parallel computational techniques are implemented to accelerate the fluid flow calculation time as well. Methods for predication of shrinkage defects of steel castings and S G. iron castings are developed based on the solidification simulation. In order to reduce the residual stress and deformation of castings, a combined FDM/FEM method is implemented for the modelling of stresses. Numerical models for the simulation of micro structure and prediction of mechanical properties of S G. iron are developed. The verifications and applications of the simulation software show that the models and techniques adopted in current research work are efficient and appropriate for the numerical simulation of shaped castings.展开更多
Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the de...Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting' s mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.展开更多
Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) s...Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) simulation of solidification process of single crystal investment castings was developed based on basic heat transfer equations. Complex heat radiation among the multiple blade castings and the furnace wall was considered in the model. Temperature distribution and temperature gradient in superalloy investment castings of single blade and multiple ones were investigated, respectively. The calculated cooling curves were compared with the experimental results and agreed well with the latter. It is indicated that the unsymmetrical temperature distribution and curved liquid-solid interface caused by the circle distribution of multiple turbine blades are probably main reasons why the stray grain and other casting defects occur in the turbine blade.展开更多
In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF me...In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects.展开更多
Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distrib...Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of custing speed and water flow rate on the mold temperature field were also discussed.展开更多
A coupled model including electromagnetic field, fluid dynamic, heat transfer and solidification, is developed and applied to the numerical simulation of steel flow and solidification in a 100mm × 100mm soft-cont...A coupled model including electromagnetic field, fluid dynamic, heat transfer and solidification, is developed and applied to the numerical simulation of steel flow and solidification in a 100mm × 100mm soft-contact mold. In this study, the 3D finite difference method and non-staggered grid system for fluid flow with body fitted coordinate were employed. Numerical results show that the electromagnetic force mainly affects the steel flow at upper part of mold, especially in the vicinity of meniscus. There exist upward flows covering the surfaces of the billet due to the concentration of electromagnetic force on the upper part of the billet. This flows join together and form a downward flow near the SEN, so a distinct circulating flow zone is formed at upper part of mold. After applying electromagnetic force, the steel velocity is improved and the temperature is raised. The strong stirring of electromagnetic force on liquid steel makes the kinetic energy on free surface increase. It is clearly seen that the solidification start point shifts downward in soft contact mold. As a result, the initial shell thickness gets thin and the initial solidification shell length is shortened.展开更多
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred...The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.展开更多
Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Win...Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A 'return back' mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.展开更多
Finite difference equations are derived based on the direct finite difference method for solving fluid flow will free surface and heat transfer. Owing to the complex shape of many castings, three dimensional analysis ...Finite difference equations are derived based on the direct finite difference method for solving fluid flow will free surface and heat transfer. Owing to the complex shape of many castings, three dimensional analysis has been considered to simulate the mold filling accurately. The simulation method which this paper present can treat the filling of mold with free surface hased on the irregular element meshing. These finite difference equations and method with free surface treatment are applicable to mold filling of complicated shapes and boundary conditions.展开更多
A finite volume based 3-D computer code which can simulate fluid flow during mould filling coupled with heat transfer as well as solidification has been developed in WTCM Foundry Center. The code can predict cold shut...A finite volume based 3-D computer code which can simulate fluid flow during mould filling coupled with heat transfer as well as solidification has been developed in WTCM Foundry Center. The code can predict cold shut during mould filling, shrinkage defects during solidification and aid designing the casting system. Several experiments of filling vertical plate castings have been carried out. A heat resistant glass window has been used to observe the liquid metal flow behavior. Although the plate casting has a very simple geometry, the associated flow behavior is quite complex. Mould filling experiments carried out identical conditions never produce exactly the same results. The simulated results of the mould filling sequence and the temperature distribution have been compared with experiments. A good agreement has been achieved. The code has been used in foundries. A real application example is given which illustrates how to use computer simulation to aid designing the casting system. Sound castings based on computer aid designing have been produced. The process of designing castings by using simulation is completely different from the traditional way. The computer aided casting design offers the possibility to obtain a sound casting from the first time.展开更多
The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mat...The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure w.ere simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.展开更多
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ...The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.展开更多
Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation softwar...Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST wascreated. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce soundcastings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.展开更多
Based on the mathematical model of Fourier Heat Conductivity Equations, this paper firstchooses an alternating-direction-implicit (ADI) type of finite difference method as the numericalcalculation method which is abso...Based on the mathematical model of Fourier Heat Conductivity Equations, this paper firstchooses an alternating-direction-implicit (ADI) type of finite difference method as the numericalcalculation method which is absolutely convergent and stable for time steps of any size when usedto calculate the temperature field. Then, the generalized programs are designed with FORTRANlanguage which can be used to calculate two-dimensional temperature field of casting solidificationof cast steel or cast iron for any shape. The calculated results about their solidification tendencyobtained from the above programs are found in good agreement with the experimental ones. Inaddition, we have measured the thermal properties of the furane resin sand which is the mouldingmaterial to make steel ingot moulds.展开更多
Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidifie...Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidified shell has been considered according to the dispersed phase model. A mathematical model has been used to evaluate the influence of bubble size, casting speed, and adsorption of nonmetallic inclusions on bubble removal and bubble distribution within the solidified shell in the mold. The results show that the ratio of bubbles floating to the top surface decreases with increasing casting speed and decreasing bubble diameter. Nonmetallic inclusion adsorption has a weak effect on the bubble.展开更多
The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyz...The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testified the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the increase of the input ampere turns.展开更多
Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromag...Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.展开更多
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.
基金The work was financially supported by the Significant Fundamental Research Development & Planning of China (G2000067208-3) the Significant Project of the National Natural Science Foundation of China (59990470-3)and the internal research fund of Tsing
文摘The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.
文摘A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.
文摘The latest progress on the study of numerical simulation of mold filling and solidification process of shaped casting is reviewed. In mold filling process simulation of castings, the SOLA VOF algorithmis is improved in efficient free surface treatment and turbulence consideration, and parallel computational techniques are implemented to accelerate the fluid flow calculation time as well. Methods for predication of shrinkage defects of steel castings and S G. iron castings are developed based on the solidification simulation. In order to reduce the residual stress and deformation of castings, a combined FDM/FEM method is implemented for the modelling of stresses. Numerical models for the simulation of micro structure and prediction of mechanical properties of S G. iron are developed. The verifications and applications of the simulation software show that the models and techniques adopted in current research work are efficient and appropriate for the numerical simulation of shaped castings.
文摘Numerical simulation of casting's mold filling process is the main and the most important aspect of the foundry CAE technology. But it is time-consuming; it may take dozens of hours or several days. While with the development of computer hardware, numerical simulation of casting' s mold filling process has made rapid progress. The simulation results, therefore, have become more and more practical. This study tries to find some clues of the computational time of mold filling process. Firstly, this paper introduces mathematic model and the basic route of numerical simulation of casting's mold filling process. Then the computational time of mold filling process has been carefully studied, and some new and useful results have been gained from the study of the computational time. Finally, this paper has given some real applications of numerical simulation of casting's mold filling process.
文摘Bridgman directional solidification of investment castings is a key technology for the production of reliable and highly efficient gas turbine blades. In this paper, a mathematical model for three-dimensional (3D) simulation of solidification process of single crystal investment castings was developed based on basic heat transfer equations. Complex heat radiation among the multiple blade castings and the furnace wall was considered in the model. Temperature distribution and temperature gradient in superalloy investment castings of single blade and multiple ones were investigated, respectively. The calculated cooling curves were compared with the experimental results and agreed well with the latter. It is indicated that the unsymmetrical temperature distribution and curved liquid-solid interface caused by the circle distribution of multiple turbine blades are probably main reasons why the stray grain and other casting defects occur in the turbine blade.
文摘In this paper, an algorithm for simulating fluid flow and heat transfer for mold filling of shaped castings is presented. The main features of the algorithm include: 1) a simple but practical technique based on VOF method to determine free surface, 2) an explicit scheme of enthalpy to solve the energy equation more efficiently, and 3) an effective treatment to modify the flux deviation due to pressure iteration. In order to verify these methods, well controlled experiments have been repeatedly done with both water analog and gray iron pouring experiments to record the flow patterns and temperature variations. The calculated results are in accordance with the experimental ones. For the applications, the simulated initial temperature distribution right after mold filling was used to analyse subsequent solidification and to predict shrinkage defects. Actual castings were poured and tested in a foundry plant. The reuslts show that the defects predication with considering fluid flow effects is more precise than that without considering the effects.
基金the National Natural Science Foundation of China (No. 599995442).
文摘Mold is the heart of the continuous casting machine. Heat transfer and solidification in a water- cooled mold are the most important factors during the continuous casting of steel. For studying the temperature distribution of a mold wall, a simulated apparatus of mold was designed and experiments were performed by it. The measured results indicated that the mold wall temperature approaches the temperature of cooling-water. An equivalent thermal-conductivity coefficient was proposed and deduced on the basis of the conclusion of the experiments. This coefficient was applied to solve the heat transfer between the melt and cooling water, and to characterize the heat transfer capacity of the mold. By this equivalent thermal-conductivity coefficient, it is very easy and convenient to numerically simulate the solidification process of continuous casting. And the calculation results are in agreement with the experiments. The effects of custing speed and water flow rate on the mold temperature field were also discussed.
基金This project is supported by the National Natural Science Foundation of China (Grant No. 59734080) the Plan of National Fundamental Research Development of China (Grant No. G1998061510).
文摘A coupled model including electromagnetic field, fluid dynamic, heat transfer and solidification, is developed and applied to the numerical simulation of steel flow and solidification in a 100mm × 100mm soft-contact mold. In this study, the 3D finite difference method and non-staggered grid system for fluid flow with body fitted coordinate were employed. Numerical results show that the electromagnetic force mainly affects the steel flow at upper part of mold, especially in the vicinity of meniscus. There exist upward flows covering the surfaces of the billet due to the concentration of electromagnetic force on the upper part of the billet. This flows join together and form a downward flow near the SEN, so a distinct circulating flow zone is formed at upper part of mold. After applying electromagnetic force, the steel velocity is improved and the temperature is raised. The strong stirring of electromagnetic force on liquid steel makes the kinetic energy on free surface increase. It is clearly seen that the solidification start point shifts downward in soft contact mold. As a result, the initial shell thickness gets thin and the initial solidification shell length is shortened.
文摘The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.
文摘Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A 'return back' mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.
文摘Finite difference equations are derived based on the direct finite difference method for solving fluid flow will free surface and heat transfer. Owing to the complex shape of many castings, three dimensional analysis has been considered to simulate the mold filling accurately. The simulation method which this paper present can treat the filling of mold with free surface hased on the irregular element meshing. These finite difference equations and method with free surface treatment are applicable to mold filling of complicated shapes and boundary conditions.
文摘A finite volume based 3-D computer code which can simulate fluid flow during mould filling coupled with heat transfer as well as solidification has been developed in WTCM Foundry Center. The code can predict cold shut during mould filling, shrinkage defects during solidification and aid designing the casting system. Several experiments of filling vertical plate castings have been carried out. A heat resistant glass window has been used to observe the liquid metal flow behavior. Although the plate casting has a very simple geometry, the associated flow behavior is quite complex. Mould filling experiments carried out identical conditions never produce exactly the same results. The simulated results of the mould filling sequence and the temperature distribution have been compared with experiments. A good agreement has been achieved. The code has been used in foundries. A real application example is given which illustrates how to use computer simulation to aid designing the casting system. Sound castings based on computer aid designing have been produced. The process of designing castings by using simulation is completely different from the traditional way. The computer aided casting design offers the possibility to obtain a sound casting from the first time.
文摘The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure w.ere simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.
基金the National Natural Science Foundation of China(No.51875062,No.52205336)the China Postdoctoral Science Foundation(No.2021M700567).
文摘The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds.
基金The reseach is supported by the TG 2000067208 project
文摘Based on a method using numerical simulation equations and their solution schemes for liquid metal flows andheat transfer during mold filling and the solidification process of casting, 3-D numerical simulation software SRIFCAST wascreated. This includes enmeshment of casting; velocity and temperature fields calculation; displaying iso-temperature lines;velocity vectors and 3-D temperature fields on a Windows 9x operating system. SRIFCAST was applied to produce soundcastings of automobile and diesel engines, and also to connect with microstructure simulation for ductile iron castings.
文摘Based on the mathematical model of Fourier Heat Conductivity Equations, this paper firstchooses an alternating-direction-implicit (ADI) type of finite difference method as the numericalcalculation method which is absolutely convergent and stable for time steps of any size when usedto calculate the temperature field. Then, the generalized programs are designed with FORTRANlanguage which can be used to calculate two-dimensional temperature field of casting solidificationof cast steel or cast iron for any shape. The calculated results about their solidification tendencyobtained from the above programs are found in good agreement with the experimental ones. Inaddition, we have measured the thermal properties of the furane resin sand which is the mouldingmaterial to make steel ingot moulds.
文摘Transient molten steel flow in a slab continuous casting mold has been calculated using large eddy simulation, considering heat transfer and solidification. The transport of bubbles in the liquid pool of the solidified shell has been considered according to the dispersed phase model. A mathematical model has been used to evaluate the influence of bubble size, casting speed, and adsorption of nonmetallic inclusions on bubble removal and bubble distribution within the solidified shell in the mold. The results show that the ratio of bubbles floating to the top surface decreases with increasing casting speed and decreasing bubble diameter. Nonmetallic inclusion adsorption has a weak effect on the bubble.
文摘The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testified the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the increase of the input ampere turns.
基金Item Sponsored by National Natural Science Foundation of China (59734080)
文摘Heat transfer and deformation of initial solidification shell in soft contact continuous casting mold under high frequency electromagnetic field were analyzed using numerical simulation method; the relative electromagnetic parameters were obtained from the previous studies. Owing to the induction heating of a high frequency electromagnetic field (20 kHz), the thickness of initial solidification shell decreases, and the temperature of strand surface and slit copper mold increases when compared with the case without the electromagnetic filed. The viscosity of flux de- creases because of the induction heating of the high frequency electromagnetic field, and the dimension of the flux channel increases with electromagnetic pressure; thus, the deformation behavior of initial solidification shell was different before and after the action of high frequency electromagnetic field. Furthermore, the abatement mechanism of oscillation marks under high frequency electromagnetic field was explained.