期刊文献+
共找到6,421篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进的SMOTE采样Catboost分类算法 被引量:2
1
作者 张德鑫 雒腾 曾志勇 《信息通信》 2020年第1期57-60,共4页
现实生活中往往存在着不平衡数据现象,而少数类样本通常是我们重点关注的信息。文章通过俄亥俄州真实的医疗数据中存在的不平衡现象,提出了一种新的采样处理方法AK-SMOTE采样方法,即将ALLKNN欠采样技术和SMOTE人过合成过采样技术相结合... 现实生活中往往存在着不平衡数据现象,而少数类样本通常是我们重点关注的信息。文章通过俄亥俄州真实的医疗数据中存在的不平衡现象,提出了一种新的采样处理方法AK-SMOTE采样方法,即将ALLKNN欠采样技术和SMOTE人过合成过采样技术相结合,同时结合2017年出的应用较为少的Catboost算法,最后通过准确率、查准率、召回率、f1-度量和AUC值作为模型效果的评价指标,结果发现采用AK-SMOTE采样处理之后的Catboost模型在最后的评价指标上相比于其他模型,分类的效果会更好,尤其是在召回率和AUC指标上效果最为明显,也说明了基于AK-SMOTE采样的Catboost分类算法在处理实际生活中存在的不平衡数据问题时有着较为出色的分类效果,对于整个社会具有一定的现实借鉴意义。 展开更多
关键词 类不平衡数据 医疗数据 AK-SMOTE采样 catboost算法
下载PDF
基于Catboost算法的网络安全风险评估等级分类研究
2
作者 徐春笙 《微型计算机》 2024年第9期76-78,共3页
网络安全风险评估过程常面临方法上的挑战,基于网络层次分析法(ANP)和模糊理论的风险评估存在高度主观性、模型构建耗时及低分类效率等挑战,还会涉及众多评估指标及其相互比较关系,这导致深层次且繁多的判断矩阵,以及特征值与特征向量... 网络安全风险评估过程常面临方法上的挑战,基于网络层次分析法(ANP)和模糊理论的风险评估存在高度主观性、模型构建耗时及低分类效率等挑战,还会涉及众多评估指标及其相互比较关系,这导致深层次且繁多的判断矩阵,以及特征值与特征向量的求解难度增加,因此,这种综合评估方法也无法迅速对多个信息系统进行风险等级分类。鉴于此,本文提出一种基于Catboost算法的风险评估等级分类方法,能有助于快速准确地确定信息系统的网络风险等级,并能识别起关键作用的信息系统风险评估要素。 展开更多
关键词 catboost算法 网络安全 风险评估 风险等级分类
下载PDF
基于CatBoost算法的配电网分区拓扑辨识
3
作者 彭寒梅 吴行 +2 位作者 胡磊 苏永新 谭貌 《电力自动化设备》 EI CSCD 北大核心 2024年第5期95-102,共8页
含多分布式电源配电网的拓扑结构具有多样性与多变性,影响拓扑辨识的实时性和准确性。提出一种基于CatBoost算法的配电网分区拓扑辨识方法。构建结合拓扑分区的配电网拓扑辨识框架,采用区域开关状态矩阵描述拓扑结构,以进行物理上的辨... 含多分布式电源配电网的拓扑结构具有多样性与多变性,影响拓扑辨识的实时性和准确性。提出一种基于CatBoost算法的配电网分区拓扑辨识方法。构建结合拓扑分区的配电网拓扑辨识框架,采用区域开关状态矩阵描述拓扑结构,以进行物理上的辨识降维;提出基于CatBoost算法的特征选择与拓扑辨识方法,通过分区并行离线训练得到历史拓扑和未知拓扑的区域拓扑辨识CatBoost模型,通过在线应用得到实时的区域开关状态矩阵标签,形成配电网开关状态矩阵,实现系统拓扑辨识。配电网算例系统测试结果验证了所提方法的有效性。 展开更多
关键词 配电网 拓扑辨识 catboost算法 拓扑分区 特征选择
下载PDF
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
4
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(catboost) 第三代非支配排序遗传算法(NSGA-Ⅲ) 盾构姿态 多目标优化 重要性排序
下载PDF
基于改进StackCNN网络和集成学习的脑电信号视觉分类算法
5
作者 杨青 王亚群 +2 位作者 文斗 王莹 王翔宇 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期69-76,共8页
针对直接使用图像诱发的脑电信号进行视觉分类的现有研究少,并且视觉分类的平均准确率低等问题,设计了一种卷积神经网络(CNN)和集成学习相结合的方法,用于学习脑电信号相关的视觉特征表示。通过在StackCNN网络中加入K-max池化方法,解决... 针对直接使用图像诱发的脑电信号进行视觉分类的现有研究少,并且视觉分类的平均准确率低等问题,设计了一种卷积神经网络(CNN)和集成学习相结合的方法,用于学习脑电信号相关的视觉特征表示。通过在StackCNN网络中加入K-max池化方法,解决在提取脑电特征时信息丢失的问题,并结合Bagging算法增强网络的泛化能力,该方法称为StackCNN-B。采用基于残差神经网络(ResNet)回归对图像进行分类,验证StackCNN-B方法在图像分类上的性能。消融实验及与现有研究对比实验的结果表明:所提方法识别准确率较高,在学习脑电信号的视觉特征表示上的平均准确率达到99.78%,在图像分类上的平均准确率达到96.45%,与Bi-LSTM-AttGW方法相比,平均提高了0.28百分点和2.97百分点。研究结果验证了脑电信号可以有效地解码与视觉识别相关的人类大脑活动,也表明所提出StackCNN-B模型的优越性。 展开更多
关键词 脑电图 视觉分类 卷积神经网络 BAGGING算法 ResNet网络
下载PDF
基于机器视觉的垃圾分类算法研究与应用 被引量:1
6
作者 王光清 李文拴 +1 位作者 党佳琦 张愉 《计算技术与自动化》 2024年第1期78-83,共6页
垃圾分类识别算法是目前研究的热点问题,本文通过引入色块追踪模块Lab颜色模型对YOLOv3算法进行优化,利用优化后的算法搭建训练模型。并针对目前垃圾类别利用网络爬虫爬取日常生活中常见的垃圾图像并进行分类,形成数据集。其次通过优化... 垃圾分类识别算法是目前研究的热点问题,本文通过引入色块追踪模块Lab颜色模型对YOLOv3算法进行优化,利用优化后的算法搭建训练模型。并针对目前垃圾类别利用网络爬虫爬取日常生活中常见的垃圾图像并进行分类,形成数据集。其次通过优化的YOLOv3算法对处理好的数据集进行模型训练,将训练后的模型进行模型检测。最后通过实际测试,优化后的YOLOv3算法识别的平均准确率达到了94.33%,与原始算法相比,优化后的算法在稳定性和准确度上都有了明显的改善。 展开更多
关键词 垃圾分类 色块追踪模块 模型训练 YOLOv3算法优化
下载PDF
基于LDA模型融合Catboost算法的文本自动分类系统设计与实现 被引量:2
7
作者 刘爱琴 郭少鹏 张卓星 《国家图书馆学刊》 北大核心 2023年第5期84-92,共9页
互联网的蓬勃发展使得文本数据呈指数型增长态势,如何实现文本内容的高效分类成为信息资源管理工作面临的紧要问题。本文以维普学术期刊资源与百度新闻网页作为基础语料集,基于LDA模型抽取文档主题、切分文本内容,融合集成学习Catboost... 互联网的蓬勃发展使得文本数据呈指数型增长态势,如何实现文本内容的高效分类成为信息资源管理工作面临的紧要问题。本文以维普学术期刊资源与百度新闻网页作为基础语料集,基于LDA模型抽取文档主题、切分文本内容,融合集成学习Catboost算法获得文档在主题上的概率分布,然后利用训练集提取出的隐含主题-文本矩阵进行分类器训练,最终构建文本分类系统。研究结果显示,该系统能够有效完成文本混合自动分类,分类误差率较低,分类性能明显优于传统的文本分类方法。 展开更多
关键词 隐含狄利克雷分布(LDA) 文本自动分类 SVM算法 catboost算法
下载PDF
基于因素空间理论的扫类连环多分类算法
8
作者 曾繁慧 王莹 +1 位作者 汪培庄 孙慧 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2024年第1期111-118,共8页
为解决多分类问题,基于因素空间理论中因素显隐的思想,在扫类连环分类算法基础上,定义类别的合并,提出因素显隐的合并扫类连环分类方法,给出算法步骤,并用数值算例进行分析;定义类别的两两组合,提出因素显隐的两两扫类连环分类方法,给... 为解决多分类问题,基于因素空间理论中因素显隐的思想,在扫类连环分类算法基础上,定义类别的合并,提出因素显隐的合并扫类连环分类方法,给出算法步骤,并用数值算例进行分析;定义类别的两两组合,提出因素显隐的两两扫类连环分类方法,给出算法步骤,并用数值算例进行分析。提出采用因素显隐的差额绝对值方法解决两个算法执行过程中出现的决策类别分不开的问题;对UCI数据集中3个实例与支持向量机作了算法对比分析,研究结果表明:提出的合并扫类连环分类方法、两两扫类连环分类方法实现了因素显隐,分类算法的精确度优于支持向量机。多分类学习的因素显隐研究结论拓展了因素空间的理论及应用研究。 展开更多
关键词 因素空间 因素显隐 扫类连环分类算法 合并扫类连环分类算法 两两扫类连环分类算法 差额绝对值法
下载PDF
二进制鼠群优化算法的特征选择及数据分类
9
作者 鲍美英 申晋祥 《计算机与数字工程》 2024年第6期1612-1616,1675,共6页
针对特征选择技术中提高分类准确率和降低特征选取个数随着数据维度增加而难度加大的问题,对新型仿生优化算法的鼠群优化算法进行改进,在算法中引入转换函数,使用K近邻法作为分类器,提出二进制鼠群优化算法,用于特征选择,进行数据分类,... 针对特征选择技术中提高分类准确率和降低特征选取个数随着数据维度增加而难度加大的问题,对新型仿生优化算法的鼠群优化算法进行改进,在算法中引入转换函数,使用K近邻法作为分类器,提出二进制鼠群优化算法,用于特征选择,进行数据分类,对特征进行有效的降维并减少数据分类的错误率。在UCI的10个数据集上进行测试,并与遗传算法、粒子群算法、樽海鞘群算法和正余弦算法进行比较,实验结果表明,所提算法能够提高数据分类准确率并有效降低特征维度,算法具有较好的收敛性和鲁棒性。 展开更多
关键词 鼠群优化算法 特征选择 数据分类 K近邻
下载PDF
基于遗传算法优化C-LSTM模型的心律失常分类方法
10
作者 王巍 丁辉 +3 位作者 夏旭 吴浩 张迎 郭家成 《中国医学物理学杂志》 CSCD 2024年第2期233-240,共8页
结合遗传算法全局寻优的特点提出一种GC-LSTM模型,该模型通过特定遗传策略的遗传算法自动迭代搜寻C-LSTM模型最佳超参数配置。利用遗传迭代结果配置模型,并按照医疗仪器促进协会制定分类标准在MIT-BIH心律失常数据库上进行验证。经过测... 结合遗传算法全局寻优的特点提出一种GC-LSTM模型,该模型通过特定遗传策略的遗传算法自动迭代搜寻C-LSTM模型最佳超参数配置。利用遗传迭代结果配置模型,并按照医疗仪器促进协会制定分类标准在MIT-BIH心律失常数据库上进行验证。经过测试,本文提出的GC-LSTM模型在分类准确率(99.37%)、灵敏度(95.62%)、精确度(95.17%)、F1值(95.39%)上相较于手动搭建模型均有所提升,且与现有主流方法相比亦具备一定优势。实验结果表明该方法在避免大量实验调参的同时取得较好的分类性能。 展开更多
关键词 心律失常分类 遗传算法 GC-LSTM模型 超参数
下载PDF
基于“分类-调度”优化的应急物资动态调度-重调度算法
11
作者 倪超 胡钟骏 +2 位作者 霍忻 吕志悦 李婧 《科学技术与工程》 北大核心 2024年第24期10356-10361,共6页
由于灾情的不确定性和信息延迟,应急救灾物资配送与车辆调度常面临配送过程中出现需求点信息动态变化的复杂环境,如何在动态变化的环境下快速反应,准确高效地实现应急物资重调度显得尤其重要。针对需求点信息动态变化的复杂环境,建立一... 由于灾情的不确定性和信息延迟,应急救灾物资配送与车辆调度常面临配送过程中出现需求点信息动态变化的复杂环境,如何在动态变化的环境下快速反应,准确高效地实现应急物资重调度显得尤其重要。针对需求点信息动态变化的复杂环境,建立一个应急物资动态调度模型,并提出基于“分类-调度”的动态调度算法,通过k-means分类将原复杂问题降解为多个简单TSP问题,随着需求点信息的变化可动态调整分类,以实现快速重调度;设计相应的路线调整策略以保证方案的可行性;最后利用遗传算法求解。数值试验结果证明了所提方法的有效性。 展开更多
关键词 应急物流 动态车辆路径调度 k-means分类 遗传算法
下载PDF
常态化监管与算法分类分级治理模式更新
12
作者 陈兵 董思琰 《学术论坛》 北大核心 2024年第3期46-55,共10页
作为人工智能的核心要素,算法成为了加速新质生产力生成不可或缺的关键技术。在对算法实施分类分级治理的过程中,我国对数字经济监管也走向常态化监管。分类分级理念及原则所涵摄的安全、创新发展及可信可控的价值要求与算法治理的基本... 作为人工智能的核心要素,算法成为了加速新质生产力生成不可或缺的关键技术。在对算法实施分类分级治理的过程中,我国对数字经济监管也走向常态化监管。分类分级理念及原则所涵摄的安全、创新发展及可信可控的价值要求与算法治理的基本目标具有高度一致性,与常态化监管的实践特征具有高度契合性。然而,当前常态化监管思路与算法分类分级治理尚未充分融合。究其原因,主要在于算法治理面临技术迭代与监管模式调整的双重变化,存在治理规则适应技术变化乏力、多元主体治理协同力量不足、治理手段与工具难以适配现实需求等挑战,还难以实现常态化监管与算法分类分级治理的有效融合。为此,文章建议在现行算法安全综合治理格局下,根据常态化监管的理念、原则及架构,对新技术、新业态、新模式发展下算法治理作出调整,转变当前算法治理的基本价值目标、完善治理具体规则、明确治理主体与治理对象及其相应义务与责任、创新治理工具,通过刚性约束与柔性治理相结合、多主体共商共建共治共筑相平衡、丰富治理手段与创新治理工具相同步等举措,不断健全常态化监管下算法分类分级治理模式,提升算法分类分级治理实效,实现算法安全发展、创新发展、规范发展的目标。 展开更多
关键词 常态化监管 算法治理 分类分级 安全发展 创新发展 规范发展
下载PDF
基于改进级联算法的不平衡数据集分类检测算法
13
作者 吕文官 薛峰 《保定学院学报》 2024年第2期98-103,共6页
以提升不平衡数据集分类检测为研究目标,提出基于改进级联算法的不平衡数据集分类检测算法.首先,采用卡尔曼滤波法进行数据去噪预处理,利用小波阈值去噪算法二次消除噪声数据,并对去噪结果进行归一化预处理;利用DPC算法提取数据的局部... 以提升不平衡数据集分类检测为研究目标,提出基于改进级联算法的不平衡数据集分类检测算法.首先,采用卡尔曼滤波法进行数据去噪预处理,利用小波阈值去噪算法二次消除噪声数据,并对去噪结果进行归一化预处理;利用DPC算法提取数据的局部密度特征,利用时间编码挖掘数据的时序性特征,采用Apriori算法的强关联规则提取数据集特征;利用模糊层次聚类算法对支持向量机进行优化,实现数据类型的划分;利用改进的级联算法联合布谷鸟算法实现不平衡数据集分类检测.实验结果表明本方法的分类协方差低于0.15,检测准确率高于95%,检测时间低于2.2 ms,有效提升了不平衡数据集分类检测效果. 展开更多
关键词 卡尔曼滤波 改进级联算法 不平衡数据集 分类检测
下载PDF
基于改进遗传算法的垃圾分类回收选址-路径优化研究
14
作者 李锋刚 陈杰 《中国储运》 2024年第4期144-146,共3页
本文主要针对垃圾回收选址-路径问题进行研究,加入了垃圾分类。建立了考虑垃圾分类的垃圾回收中转站选址-路径模型,最小化物流总成本。根据问题模型特点,设计了改进遗传算法来对问题进行求解。采用自适应交叉、变异算子、变邻域算法以... 本文主要针对垃圾回收选址-路径问题进行研究,加入了垃圾分类。建立了考虑垃圾分类的垃圾回收中转站选址-路径模型,最小化物流总成本。根据问题模型特点,设计了改进遗传算法来对问题进行求解。采用自适应交叉、变异算子、变邻域算法以及精英保存策略来对算法进行改进。 展开更多
关键词 路径问题 改进遗传算法 垃圾回收 垃圾分类 自适应交叉 路径模型 变异算子 邻域算法
下载PDF
基于机载激光雷达点云数据和Catboost算法的杉木单木蓄积量估测研究 被引量:1
15
作者 孙梦莲 余坤勇 +5 位作者 张晓萍 赵各进 陈奕辰 陈翔宇 黄翔 刘健 《西南林业大学学报(自然科学)》 CAS 北大核心 2024年第3期157-165,共9页
选取福建顺昌县洋口国有林场6块杉木标准地内200株杉木的激光雷达点云数据和地面调查数据,基于机载激光雷达点云数据生成的冠层高度模型,运用局域极大值算法检测树冠顶点,提取树高;采用标记极值的分水岭算法估测冠幅面积,将估测的树高... 选取福建顺昌县洋口国有林场6块杉木标准地内200株杉木的激光雷达点云数据和地面调查数据,基于机载激光雷达点云数据生成的冠层高度模型,运用局域极大值算法检测树冠顶点,提取树高;采用标记极值的分水岭算法估测冠幅面积,将估测的树高和冠幅面积结合单木蓄积量真值,构建基于Catboost算法的单木蓄积量估测模型。结果表明:使用局域极大值算法估测树高,R^(2)为0.91,RMSE为0.81 m;采用标记极值的分水岭算法估测冠幅面积,R^(2)为0.81,RMSE为1.18 m^(2);采用Catboost算法构建单木蓄积量估测模型R^(2)为0.934。因此,机载激光雷达点云数据可以有效估测树高和树冠面积,采用Catboost算法能够实现杉木单木蓄积量的估测,为高精度反演森林蓄积量提供新的思路。 展开更多
关键词 蓄积量 树高 冠幅 catboost算法
下载PDF
基于改进SPRINT分类算法的数据挖掘模型
16
作者 林敏 王李杰 《信息技术》 2024年第3期170-174,187,共6页
为解决目前数据挖掘模型分类时间长、挖掘准确率不高的问题,提出基于改进决策树分类算法(SPRINT)的数据挖掘模型。先采用最大-最小规范化公式完成原始数据线性变换,利用改进后的SPRINT分类算法按照输入数据特性进行分类,使用协同过滤技... 为解决目前数据挖掘模型分类时间长、挖掘准确率不高的问题,提出基于改进决策树分类算法(SPRINT)的数据挖掘模型。先采用最大-最小规范化公式完成原始数据线性变换,利用改进后的SPRINT分类算法按照输入数据特性进行分类,使用协同过滤技术生成与数据相近的属性集,计算数据属性相似度,生成语义规则集,为用户提供更优的数据服务。选取某公司营销数据集作为样本进行对比实验,结果表明,与对比模型相比,所提出的数据挖掘模型分类时间更短,挖掘准确率更高,能为用户提供更优质的数据服务。 展开更多
关键词 决策树分类算法 协同过滤技术 语义规则集 数据挖掘模型 神经网络
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
17
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 K-MEANS聚类算法 网络异常 数据挖掘 数据分类 离群点检测
下载PDF
数据故事化解释中分类型预测结果的反转点识别方法研究——基于LIME算法 被引量:1
18
作者 靳庆文 朝乐门 张晨 《情报理论与实践》 北大核心 2024年第2期170-177,共8页
[目的/意义]实现数据故事化中的反转点识别,有助于非专业人士理解分类型预测结果的产生原因,同时对于推动故事情节发展并使其快速到达故事高潮点具有促进作用。[方法/过程]提出故事点与反转点概念,基于LIME解释技术和反转点识别过程,设... [目的/意义]实现数据故事化中的反转点识别,有助于非专业人士理解分类型预测结果的产生原因,同时对于推动故事情节发展并使其快速到达故事高潮点具有促进作用。[方法/过程]提出故事点与反转点概念,基于LIME解释技术和反转点识别过程,设计了用于数据故事化中反转点识别的算法方案,并提出了面向分类模型的反转点识别流程。[结果/结论]将反转点识别算法应用到贷款数据集,证明此算法在数据故事化过程中寻找反转点的有效性,在获得用户期望的预测结果和快速识别反转点方面具有应用价值。 展开更多
关键词 数据故事化 分类模型 反转点 LIME算法
下载PDF
基于SA-PSO算法优化CNN的电能质量扰动分类模型 被引量:1
19
作者 肖白 李道明 +2 位作者 穆钢 高文瑞 董光德 《电力自动化设备》 EI CSCD 北大核心 2024年第5期185-190,共6页
针对传统电能质量扰动分类模型中扰动特征复杂、识别步骤繁琐的问题,提出了一种通过模拟退火(SA)算法与粒子群优化(PSO)算法相结合来优化卷积神经网络(CNN)的电能质量扰动分类模型。将CNN卷积层中的二维卷积核替换成一维卷积核;采用SA... 针对传统电能质量扰动分类模型中扰动特征复杂、识别步骤繁琐的问题,提出了一种通过模拟退火(SA)算法与粒子群优化(PSO)算法相结合来优化卷积神经网络(CNN)的电能质量扰动分类模型。将CNN卷积层中的二维卷积核替换成一维卷积核;采用SA算法对PSO算法进行改进,规避PSO算法陷入局部最优的困境;采用改进后的PSO算法对CNN进行参数寻优;利用优化CNN提取和筛选合适的特征,根据这些特征利用分类器得到最终分类结果。通过算例分析得出,使用基于SA-PSO算法优化的CNN的电能质量扰动分类模型能精确地识别出电能质量扰动信号。 展开更多
关键词 电能质量 扰动分类 卷积神经网络 粒子群优化算法 模拟退火算法 特征提取
下载PDF
CatBoost算法结合Optuna框架预测砂土液化
20
作者 何家智 冯现大 刘天琦 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第4期496-502,共7页
为了解决利用机器学习算法建立的部分砂土液化预测模型仅在特定地区实现高精确预测而泛化能力减弱的问题,从而扩大砂土液化预测模型适用范围,准确预测砂土液化,以更好地防治地震灾害,基于类别型特征提升算法CatBoost并结合自动超参数优... 为了解决利用机器学习算法建立的部分砂土液化预测模型仅在特定地区实现高精确预测而泛化能力减弱的问题,从而扩大砂土液化预测模型适用范围,准确预测砂土液化,以更好地防治地震灾害,基于类别型特征提升算法CatBoost并结合自动超参数优化框架Optuna进行调参训练,建立CatBoost-Optuna砂土液化预测模型;将标准贯入试验的地震液化数据集划分为训练集和测试集,利用5个评估指标评估所建立模型的预测结果,与测试集中多层感知机和支持向量机砂土液化预测模型的评估结果相比较,并以地震液化案例数据作为验证集,对比不同预测模型的预测效果。结果表明:与多层感知机和支持向量机砂土液化预测模型相比,所建立的模型在测试集中评估指标较大,有更好的预测效果;在验证集中,所建立模型的评估指标只有精准率略微减小,其他评估指标都保持稳定,而对比模型的评估指标只有召回率保持稳定,其他评估指标都有所减小,只有所建立模型的预测效果与在测试集中的预测效果保持一致,进一步证明所建立模型的泛化能力较强。 展开更多
关键词 岩土工程 砂土液化预测 机器学习 catboost算法 Optuna框架 泛化能力
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部