It is generally recognized that the optimal distribution of catalyst activity in a spherical catalyst is a Dirac d-function. However, catalyst with other alternative distribution may accomplish the same reaction task ...It is generally recognized that the optimal distribution of catalyst activity in a spherical catalyst is a Dirac d-function. However, catalyst with other alternative distribution may accomplish the same reaction task without necessarily concentrating the catalyst activity in an inside thin layer. Moreover, the alternative with activity on catalyst surface may offer higher reaction rate and better utilization of reaction heat (higher exergy output). Simple cases of first-order exothermal reactions, in particular when the catalyst is limited by the maximum working temperature, are presented to demonstrate the above advantages and to show the importance of studying the optimal activity distribution with the consideration on exergy maximization and entropy production minimization.展开更多
The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which ...The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which the effectiveness factor can be maximized is a δ-function which means that the activity of thecatalyst should be concentrated on a layer with negligible thickness in a precise locationfrom the centerof pellets.The general equations for predicting the value ofand maximum effectiveness factor as a functionof thermodynamic,kinetic and transport parameters are derived and they can be given explicitly in the case ofa=O,m=a or isothermal reaction.An active layer with definite thickness and a deviation from the optimal locationboth decrease thevalue of the effectiveness factor.It has been shown numerically that the effectiveness factor decreases slightlywith an active layer at the inner side of x but seriously at outer side.展开更多
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
The composition distribution (CD) and microisotacticity distribution (ID) of propene/1-hexene copolymer synthesized by MgCl2/DIBP/TiCl4 (DIBP: diisobutyl phthalate) were determined by fractionating the copolymers acco...The composition distribution (CD) and microisotacticity distribution (ID) of propene/1-hexene copolymer synthesized by MgCl2/DIBP/TiCl4 (DIBP: diisobutyl phthalate) were determined by fractionating the copolymers according to crystallinity and characterizing the fractions by (CNMR)-C-13. The effects of two alkoxysilane donors, triethoxyphenylsilane (PTES) and dimethoxydi-tert-butylsilane (TBMS), on CD and ID of the copolymers were compared. Three main parts in the CD diagram of each copolymer were distinguished, which were correlated to active center distribution (ACD) based on three groups of different active centers. By studying the changes in l-hexene content, microisotacticity and reactivity ratio product of three typical fractions, the effects of external donor on ACD were better elucidated. It was found that TBMS shows much stronger effects on ACD than PTES. In the former system, most fractions were produced on active centers with relatively lower r(1)r(2), higher reactivity to I-hexene, and higher stereospecificity as compared to the system without external donor. It is concluded that the observed very extensive changes in ACD are mainly resulted by the formation of new types of active centers, possibly by coordination of external donor to certain positions on the catalyst.展开更多
Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by...Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.展开更多
Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight...Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight distribution into multiple Flory components.Each Flory component is thought to be formed by a certain type of active center. ACD of ethylene-1-hexene copolymer with very low 1-hexene incorporation was compared with that of ethylene homopolymer to see the effect of introducingα-olefin on ethyle...展开更多
One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be...One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be considered in the reactor performance: the “conversion” of the feed and the “selectivity” of the process, which is the conversion split between the desired and the undesired products. In this work, a comprehensive model is developed and used to assess the impact of pore-size distribution (PSD) on both conversion and selectivity in series catalytic reactions. In particular, the evaluation considers the effects of various combinations of micro- and macro-porosity, the potential advantages of radial variation of the porosity in the catalyst pellets, and the effect of pellet size. Results show that, for series reactions, when the formation of the desired product is followed by an undesirable degradation reaction, higher porosity in pellets, particularly in the micro-range, gives higher overall conversion, but lowers selectivity towards the formation of the desired product. Selectivity in these pellets can be improved by using a non-uniform PSD that provides a radial gradient of effective diffusivity in pellets increasing from the center to the outer pellet surface. The pellet size also has a significant effect, and larger pellets show lower selectivity in most cases. In general, conversion and selectivity trends move in opposite directions with changes in PSD and the pore structural properties of pellets. Therefore, finding the optimum design of pellets is an optimization process that requires process modeling. Consequently, selecting the best catalyst properties involves optimization, and the needed tool is a comprehensive mathematical model that takes into account the details of mass transport and reaction kinetics in the catalyst pellets. Our primary objective has been the development of a flexible mathematical model that would be applicable to a wide range of conditions and can be used as a design tool and an optimization platform.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20236050)
文摘It is generally recognized that the optimal distribution of catalyst activity in a spherical catalyst is a Dirac d-function. However, catalyst with other alternative distribution may accomplish the same reaction task without necessarily concentrating the catalyst activity in an inside thin layer. Moreover, the alternative with activity on catalyst surface may offer higher reaction rate and better utilization of reaction heat (higher exergy output). Simple cases of first-order exothermal reactions, in particular when the catalyst is limited by the maximum working temperature, are presented to demonstrate the above advantages and to show the importance of studying the optimal activity distribution with the consideration on exergy maximization and entropy production minimization.
文摘The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which the effectiveness factor can be maximized is a δ-function which means that the activity of thecatalyst should be concentrated on a layer with negligible thickness in a precise locationfrom the centerof pellets.The general equations for predicting the value ofand maximum effectiveness factor as a functionof thermodynamic,kinetic and transport parameters are derived and they can be given explicitly in the case ofa=O,m=a or isothermal reaction.An active layer with definite thickness and a deviation from the optimal locationboth decrease thevalue of the effectiveness factor.It has been shown numerically that the effectiveness factor decreases slightlywith an active layer at the inner side of x but seriously at outer side.
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
文摘The composition distribution (CD) and microisotacticity distribution (ID) of propene/1-hexene copolymer synthesized by MgCl2/DIBP/TiCl4 (DIBP: diisobutyl phthalate) were determined by fractionating the copolymers according to crystallinity and characterizing the fractions by (CNMR)-C-13. The effects of two alkoxysilane donors, triethoxyphenylsilane (PTES) and dimethoxydi-tert-butylsilane (TBMS), on CD and ID of the copolymers were compared. Three main parts in the CD diagram of each copolymer were distinguished, which were correlated to active center distribution (ACD) based on three groups of different active centers. By studying the changes in l-hexene content, microisotacticity and reactivity ratio product of three typical fractions, the effects of external donor on ACD were better elucidated. It was found that TBMS shows much stronger effects on ACD than PTES. In the former system, most fractions were produced on active centers with relatively lower r(1)r(2), higher reactivity to I-hexene, and higher stereospecificity as compared to the system without external donor. It is concluded that the observed very extensive changes in ACD are mainly resulted by the formation of new types of active centers, possibly by coordination of external donor to certain positions on the catalyst.
基金Project supported by the National Natural Science Foundation ofChina (No. 20172045) Science and Technology Plan Fund of Zhe-jiang Province (No. 001101116) and Foundation for Doctors ofNingbo City (No. 2003A62012) China
文摘Novel MgCl2-supported Ziegler-Natta (Z-N) catalysts prepared using a new one-pot ball milling method can effectively control the amounts of Ti-loading in the catalysts. Complex GPC data on polypropylene synthesized by these novel catalysts were analyzed using the method of fitting the molecular weight distribution (MWD) curves with a multiple Flory-Schulz function. It was found that multiple active centers exist in these novel catalysts. Detailed study of the effects of the Ti-loadings in the catalysts on the distribution of the active centers showed that the Ti-loadings in the novel MgCl2-supported Z-N catalysts might affect the proportion of each type of active centers; and might be the main factor responsible for the effect of the Ti-loadings on the microstructure, the molecular weight and molecular weight distribution width of the resultant polymer, the catalytic activity and polymerization kinetics.
基金the Major State Basic Research Programs(No.2005CB623804).
文摘Distribution of active centers(ACD)of ethylene or 1-hexene homopolymerization and ethylene-1-hexene copolymerization with a MgCl_2/TiCl_4 type Z-N catalyst were studied by deconvolution of the polymer molecular weight distribution into multiple Flory components.Each Flory component is thought to be formed by a certain type of active center. ACD of ethylene-1-hexene copolymer with very low 1-hexene incorporation was compared with that of ethylene homopolymer to see the effect of introducingα-olefin on ethyle...
文摘One of the main challenges in the design and operation of catalytic reactors for reactions with multiple paths/steps is the occurrence of undesirable reactions and products. In these cases, two main factors need to be considered in the reactor performance: the “conversion” of the feed and the “selectivity” of the process, which is the conversion split between the desired and the undesired products. In this work, a comprehensive model is developed and used to assess the impact of pore-size distribution (PSD) on both conversion and selectivity in series catalytic reactions. In particular, the evaluation considers the effects of various combinations of micro- and macro-porosity, the potential advantages of radial variation of the porosity in the catalyst pellets, and the effect of pellet size. Results show that, for series reactions, when the formation of the desired product is followed by an undesirable degradation reaction, higher porosity in pellets, particularly in the micro-range, gives higher overall conversion, but lowers selectivity towards the formation of the desired product. Selectivity in these pellets can be improved by using a non-uniform PSD that provides a radial gradient of effective diffusivity in pellets increasing from the center to the outer pellet surface. The pellet size also has a significant effect, and larger pellets show lower selectivity in most cases. In general, conversion and selectivity trends move in opposite directions with changes in PSD and the pore structural properties of pellets. Therefore, finding the optimum design of pellets is an optimization process that requires process modeling. Consequently, selecting the best catalyst properties involves optimization, and the needed tool is a comprehensive mathematical model that takes into account the details of mass transport and reaction kinetics in the catalyst pellets. Our primary objective has been the development of a flexible mathematical model that would be applicable to a wide range of conditions and can be used as a design tool and an optimization platform.