An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the ...An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).展开更多
In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435&...In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435°C by temperature gradient growth. The effects of Fe additive on the crystal morphology are discussed in the diamond crystallization process.Furthermore, Fourier infrared measurement results indicate that the spectrum of the diamond obtained from Ni + Fe–C system after annealing treatment is nearly consistent with that of natural diamond crystal. We believe that this study is of benefit to a further understanding of the growth mechanism of natural diamond.展开更多
基金supported by the Royal Academy of Engineering,United Kingdom
文摘An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).
基金supported by the National Natural Science Foundation of China(Grant No.51172089)the Natural Science Foundation of Guizhou Provincial Education Department,China(Grant No.KY[2013]183)the Research Fund for the Doctoral Program of Tongren University,China(Grant Nos.DS1302 and trxy S1415)
文摘In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435°C by temperature gradient growth. The effects of Fe additive on the crystal morphology are discussed in the diamond crystallization process.Furthermore, Fourier infrared measurement results indicate that the spectrum of the diamond obtained from Ni + Fe–C system after annealing treatment is nearly consistent with that of natural diamond crystal. We believe that this study is of benefit to a further understanding of the growth mechanism of natural diamond.