Boehmite nanoparticles with a high surface area and a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support vanadium‐oxo‐sulfate and molybdenum hexac...Boehmite nanoparticles with a high surface area and a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support vanadium‐oxo‐sulfate and molybdenum hexacarbonyl complexes. These supported catalysts were then characterized by Fou‐rier‐transform infrared spectroscopy, powder X‐ray diffraction, thermogravimetry and differential thermal analysis, X‐ray‐photoelectron spectroscopy, elemental analysis, inductively coupled plasma, and transmission electron microscopy techniques. The catalysts were subsequently used for the epoxidation of cis‐cyclooctene, and the experimental procedures were optimized. The progress of the reactions was investigated by gas‐liquid chromatography. Recycling experiments revealed that these nanocatalysts could be repeatedly used several times for a nearly complete epoxidation of cis‐cyclooctene. The optimized experimental conditions were also used successfully for the epoxida‐tion of some other substituted alkenes.展开更多
The alcohol synthesis with a good proportion of higher alcohols was studied over promoted Co/CuLaZr catalysts. the molybdenum addition improved greatly the performance. The results of probe molecule tests could be use...The alcohol synthesis with a good proportion of higher alcohols was studied over promoted Co/CuLaZr catalysts. the molybdenum addition improved greatly the performance. The results of probe molecule tests could be used to explain the effects.展开更多
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi...Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Results of research of supercritical fluid CO2-regeneration process of Nickel-Molybdenum Catalysts DN-3531 and Criterion 514 are given. Regeneration was carried out with the use of pure supercritical carbon dioxide an...Results of research of supercritical fluid CO2-regeneration process of Nickel-Molybdenum Catalysts DN-3531 and Criterion 514 are given. Regeneration was carried out with the use of pure supercritical carbon dioxide and mixture of supercritical carbon dioxide and various polar cosolvents. Regeneration process is carried out along isotherms, in the temperature range of 323 - 383 K, at pressures of P = 20 MPa and 30 MPa. Results of surface assessment of the catalyst samples regenerated show high effectiveness of suggested method.展开更多
Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene....Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene.12.5% Sr loading was shown to be the optimum content to the V-Mo catalyst.The results were supported by various characterization techniques,namely,BET,XRD,SEM,FTIR and TPD.展开更多
CO2 methanation with Hydrogen to form CH4 offers a solution for off-peak renewable energy storage. γ-alumina-supported Mo and Ni-Mo catalysts were used in CO2 methanation, either in their reduced or in their carburiz...CO2 methanation with Hydrogen to form CH4 offers a solution for off-peak renewable energy storage. γ-alumina-supported Mo and Ni-Mo catalysts were used in CO2 methanation, either in their reduced or in their carburized form. The presence of Ni improved the carburization extent of Mo-species, resulting in increased catalytic activity and selectivity for the catalytic CO2 methanation reaction. Carburization generally enhances the basicity of the materials and thus CO2 absorption on their surface. At 300°C, the conversions of CO2 for the reduced Ni-Mo/Al2O3 catalyst and Ni-Mo2C/Al2O3 catalysts were 5.3% and 13.8% respectively with a corresponding selectivity in CH4 of 10.0% and 98.1%, respectively.展开更多
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d...The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.展开更多
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It...This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.展开更多
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe...Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.展开更多
The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively ...The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively removes SO_(2),NO_(x)and Hg^(0)at low temperatures.This paper first reviews the simultaneous removal of SO_(2),NO_(x)and Hg^(0)by unsupported and supported catalysts.It then describes and compares the research progress of various carriers,eg.,carbon-based materials,metal oxides,silica,molecular sieves,metal-organic frameworks,and pillared interlayered clays,in the simultaneous removal of SO_(2),NO_(x)and Hg^(0).The effects of flue-gas components(such as O_(2),NH3,HCl,H2 O,SO_(2),NO and Hg^(0))on the removal of SO_(2),NOx,and Hg^(0)are discussed comprehensively and systematically.After summarizing the pollutantremoval mechanism,the review discusses future developments in the simultaneous removal of SO_(2),NOx and Hg^(0)by catalysts.展开更多
Formic acid is regarded to be one of the most prospective hydrogen carriers.Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA de...Formic acid is regarded to be one of the most prospective hydrogen carriers.Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA dehydrogenation is considered as a key to the commercial application for hydrogen economics.Herein,dehydrogenation of liquid neat FA achieved a gas production value of 1753.5 mL/gcat./h at 94℃by using a biomass-derivedγ-Mo_(2)N based catalyst synthesized from the earth-abundant molybdenum and soybean with a facile pyrolysis process.The effect of material ratio,pyrolysis temperature on the catalytic performance of FA dehydrogenation were studied in details.In particular,the catalyst obtained at a pyrolysis temperature of 700℃,weight ratios of ammonium molybdate to soybean of 0.2/1 exhibited the highest activity.In addition,the catalytic activity increased with the increase of FA concentration,but conversely,the dehydrogenation selectivity decreased with the increasing FA concentration.Moreover,it was found that the Bio-Mo_(2)N catalyst was rather stable over the 40 h continuous reaction period.展开更多
The nickel-promoted Cu-containing catalysts (CuxNiy-MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite-like precursors, and characterized by X-ray powder diffraction, inductively-coupled p...The nickel-promoted Cu-containing catalysts (CuxNiy-MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite-like precursors, and characterized by X-ray powder diffraction, inductively-coupled plasma atomic emission spectroscopy, N2 adsorption-desorption, UV-Vis diffuse reflectance spectra and temperatureprogrammed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu-MgAlO or Ni-MgAlO samples in FFR hydrogenation, and the CuNi-MgAIO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu~ species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.展开更多
A fundamental step in the production of an industrial catalyst is its crushing strength assessment. Limited literature exists in which the strength reliability of supported catalysts is investigated from production to...A fundamental step in the production of an industrial catalyst is its crushing strength assessment. Limited literature exists in which the strength reliability of supported catalysts is investigated from production to their application in a reactor. In this work, cylindrical supports were prepared by pelletizing high poros- ity γ-alumina powder, and Cu-Znf/γ-Al2O3 catalysts were prepared by impregnation of the pelletized γ-alumina supports with an aqueous solution of copper and zinc nitrates. The support-forming variables, such as binder concentration, compaction pressure, calcination temperature, and drying procedure were investigated. The Weibull method was used to analyze the crushing strength data of the supports, and the fresh and used catalysts before and after the low-temperature water gas shift reaction. Support formation at a 50 wt% binder concentration, 1148 MPa compaction pressure, 500 ℃ calcination temperature, and rapid drying (100 ℃, 8 h) led to the maximum support mechanical reliability. The most reliable catalyst with respect to simultaneous appropriate catalytic performance and mechanical strength was prepared from a support with the lowest mean crushing strength (26.25 MPa). This work illustrates the impor- tance of the Weibull modulus as a useful mechanical reliability index in manufacturing a supported solid catalyst.展开更多
The development of low-cost and highly efficient electrocatalysts for hydrogen evolution reaction(HER)is critical to the wide-spread applications of water splitting technology.In recent years,many efforts are devoted ...The development of low-cost and highly efficient electrocatalysts for hydrogen evolution reaction(HER)is critical to the wide-spread applications of water splitting technology.In recent years,many efforts are devoted to exploring HER catalysts with high activity and stability based on non-precious metals.Benefited from the advantages of two-dimensional(2D)materials with unique physicochemical properties along with the single-atom catalysts with high activity,excellent stability and maximized atom utility efficiency,a new category of catalysts with 2D materials confining single atoms have shown great promises as high-performance HER catalysts.In this review,MoS_(2),as one of the typical 2D materials,doped with various single metal atoms as HER catalysts are fully discussed,including different synthetic strategies,catalytic performances and mechanisms toward HER as well as the major challenges ahead.展开更多
In this paper, the effect of catalytic support and sulfiding method on the chemical state of supported Co-Mo catalysts is studied by XPS. After sulfidation with in-situ method, the majority of molybdenum in CNT suppor...In this paper, the effect of catalytic support and sulfiding method on the chemical state of supported Co-Mo catalysts is studied by XPS. After sulfidation with in-situ method, the majority of molybdenum in CNT supported CoMo catalyst is transferred to a species with a formal chemical state Mo(IV) in MoS2 phase, and the rest to Mo(V) which consists of Mo coordinated both to O and S, such as MoO2S2-2 and MoO3S2-. In case of CoMo/-Al2O3 catalyst sulfided with in-situ method, a fraction of molybdenum is transferred to formal state Mo(IV) in the form of MoS2, but there is still a mount of unreduced Mo(VI) phase which is difficult to be sulfided. In CoMo/CNT cata-lytic system sulfided with ex-situ method, Mo(IV) in the form of MoS2 is detected along with a portion of unre-duced Mo(VI) phase, suggesting that not all the Mo phases are reduced and sulfided by ex-situ method. As for CoMo/-Al2O3, a portion of molybdenum is sulfided to intermediate reduced state Mo(V) which consists of Mo co-ordinated both to O and S, such as MoO2S2-2 and MoO3S2-, in addition, there is still a fraction of unreduced Mo(VI) phase. XPS analyses results suggest that CNT support facilitates the reduction and sulfidation of active species to a large extent, and that alumina support strongly interacts with active species, hereby producing a fraction of phase which resists complete sulfiding. Catalytic measurements of catalysts in the HDS of dibenzothiophene (DBT) show that CoMo/CNT catalysts are of higher HDS activity and selectivity than CoMo/-Al2O3 catalyst, which is in good relation with the sulfiding behavior of the corresponding catalyst.展开更多
A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum ...A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.展开更多
Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray p...Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.展开更多
The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH...The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.展开更多
The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted...The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.展开更多
基金the vice-president's office for research affairs of Shahrood University of Technology for the financial support of this work
文摘Boehmite nanoparticles with a high surface area and a high degree of surface hydroxyl groups were covalently functionalized by 3‐(trimethoxysilyl)‐propylamine to support vanadium‐oxo‐sulfate and molybdenum hexacarbonyl complexes. These supported catalysts were then characterized by Fou‐rier‐transform infrared spectroscopy, powder X‐ray diffraction, thermogravimetry and differential thermal analysis, X‐ray‐photoelectron spectroscopy, elemental analysis, inductively coupled plasma, and transmission electron microscopy techniques. The catalysts were subsequently used for the epoxidation of cis‐cyclooctene, and the experimental procedures were optimized. The progress of the reactions was investigated by gas‐liquid chromatography. Recycling experiments revealed that these nanocatalysts could be repeatedly used several times for a nearly complete epoxidation of cis‐cyclooctene. The optimized experimental conditions were also used successfully for the epoxida‐tion of some other substituted alkenes.
文摘The alcohol synthesis with a good proportion of higher alcohols was studied over promoted Co/CuLaZr catalysts. the molybdenum addition improved greatly the performance. The results of probe molecule tests could be used to explain the effects.
基金support from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals
文摘Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
文摘Results of research of supercritical fluid CO2-regeneration process of Nickel-Molybdenum Catalysts DN-3531 and Criterion 514 are given. Regeneration was carried out with the use of pure supercritical carbon dioxide and mixture of supercritical carbon dioxide and various polar cosolvents. Regeneration process is carried out along isotherms, in the temperature range of 323 - 383 K, at pressures of P = 20 MPa and 30 MPa. Results of surface assessment of the catalyst samples regenerated show high effectiveness of suggested method.
文摘Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene.12.5% Sr loading was shown to be the optimum content to the V-Mo catalyst.The results were supported by various characterization techniques,namely,BET,XRD,SEM,FTIR and TPD.
文摘CO2 methanation with Hydrogen to form CH4 offers a solution for off-peak renewable energy storage. γ-alumina-supported Mo and Ni-Mo catalysts were used in CO2 methanation, either in their reduced or in their carburized form. The presence of Ni improved the carburization extent of Mo-species, resulting in increased catalytic activity and selectivity for the catalytic CO2 methanation reaction. Carburization generally enhances the basicity of the materials and thus CO2 absorption on their surface. At 300°C, the conversions of CO2 for the reduced Ni-Mo/Al2O3 catalyst and Ni-Mo2C/Al2O3 catalysts were 5.3% and 13.8% respectively with a corresponding selectivity in CH4 of 10.0% and 98.1%, respectively.
基金supported by the National Basic Research Program of China(Grant 2005CB 221405)
文摘The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface.
文摘This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed.
基金supported by the German Federal Ministry of Education and Research (BMBF) for the CarboKat Project (03X0204D) within the scope of the Inno.CNT Alliance
文摘Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.
基金supported by the National Natural Science Foundation of China(Nos.52000093,51968034,41807373 and21667015)National Key R&D Program of China(No.2018YFC0213400)+1 种基金China Postdoctoral Science Foundation(Nos.2020T130271,2019M663911XB)Open Fund of National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019B03)。
文摘The simultaneous removal of SO_(2),NO_(x)and Hg^(0)from industrial exhaust flue gas has drawn worldwide attention in recent years.A particularly attractive technique is selective catalytic reduction,which effectively removes SO_(2),NO_(x)and Hg^(0)at low temperatures.This paper first reviews the simultaneous removal of SO_(2),NO_(x)and Hg^(0)by unsupported and supported catalysts.It then describes and compares the research progress of various carriers,eg.,carbon-based materials,metal oxides,silica,molecular sieves,metal-organic frameworks,and pillared interlayered clays,in the simultaneous removal of SO_(2),NO_(x)and Hg^(0).The effects of flue-gas components(such as O_(2),NH3,HCl,H2 O,SO_(2),NO and Hg^(0))on the removal of SO_(2),NOx,and Hg^(0)are discussed comprehensively and systematically.After summarizing the pollutantremoval mechanism,the review discusses future developments in the simultaneous removal of SO_(2),NOx and Hg^(0)by catalysts.
基金supported by the Natural Science Foundation of Jiangxi Province of China(20224BAB203026)National Natural Science Foundation of China(22169017)+1 种基金the Science and Technology Project of Jiangxi Education Department of China(GJJ201709,GJJ2201823,and GJJ2201830)the Subsidy Project after R&D Investment of Shangrao City,China(SKB2021002).
文摘Formic acid is regarded to be one of the most prospective hydrogen carriers.Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA dehydrogenation is considered as a key to the commercial application for hydrogen economics.Herein,dehydrogenation of liquid neat FA achieved a gas production value of 1753.5 mL/gcat./h at 94℃by using a biomass-derivedγ-Mo_(2)N based catalyst synthesized from the earth-abundant molybdenum and soybean with a facile pyrolysis process.The effect of material ratio,pyrolysis temperature on the catalytic performance of FA dehydrogenation were studied in details.In particular,the catalyst obtained at a pyrolysis temperature of 700℃,weight ratios of ammonium molybdate to soybean of 0.2/1 exhibited the highest activity.In addition,the catalytic activity increased with the increase of FA concentration,but conversely,the dehydrogenation selectivity decreased with the increasing FA concentration.Moreover,it was found that the Bio-Mo_(2)N catalyst was rather stable over the 40 h continuous reaction period.
文摘The nickel-promoted Cu-containing catalysts (CuxNiy-MgAlO) for furfural (FFR) hydrogenation were prepared from the hydrotalcite-like precursors, and characterized by X-ray powder diffraction, inductively-coupled plasma atomic emission spectroscopy, N2 adsorption-desorption, UV-Vis diffuse reflectance spectra and temperatureprogrammed reduction with H2 in the present work. The obtained catalysts were observed to exhibit a better catalytic property than the corresponding Cu-MgAlO or Ni-MgAlO samples in FFR hydrogenation, and the CuNi-MgAIO catalyst with the actual Cu and Ni loadings of 12.5 wt% and 4.5 wt%, respectively, could give the highest FFR conversion (93.2%) and furfuryl alcohol selectivity (89.2%). At the same time, Cu~ species from the reduction of Cu2+ ions in spinel phases were deduced to be more active for FFR hydrogenation.
文摘A fundamental step in the production of an industrial catalyst is its crushing strength assessment. Limited literature exists in which the strength reliability of supported catalysts is investigated from production to their application in a reactor. In this work, cylindrical supports were prepared by pelletizing high poros- ity γ-alumina powder, and Cu-Znf/γ-Al2O3 catalysts were prepared by impregnation of the pelletized γ-alumina supports with an aqueous solution of copper and zinc nitrates. The support-forming variables, such as binder concentration, compaction pressure, calcination temperature, and drying procedure were investigated. The Weibull method was used to analyze the crushing strength data of the supports, and the fresh and used catalysts before and after the low-temperature water gas shift reaction. Support formation at a 50 wt% binder concentration, 1148 MPa compaction pressure, 500 ℃ calcination temperature, and rapid drying (100 ℃, 8 h) led to the maximum support mechanical reliability. The most reliable catalyst with respect to simultaneous appropriate catalytic performance and mechanical strength was prepared from a support with the lowest mean crushing strength (26.25 MPa). This work illustrates the impor- tance of the Weibull modulus as a useful mechanical reliability index in manufacturing a supported solid catalyst.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51902099)。
文摘The development of low-cost and highly efficient electrocatalysts for hydrogen evolution reaction(HER)is critical to the wide-spread applications of water splitting technology.In recent years,many efforts are devoted to exploring HER catalysts with high activity and stability based on non-precious metals.Benefited from the advantages of two-dimensional(2D)materials with unique physicochemical properties along with the single-atom catalysts with high activity,excellent stability and maximized atom utility efficiency,a new category of catalysts with 2D materials confining single atoms have shown great promises as high-performance HER catalysts.In this review,MoS_(2),as one of the typical 2D materials,doped with various single metal atoms as HER catalysts are fully discussed,including different synthetic strategies,catalytic performances and mechanisms toward HER as well as the major challenges ahead.
基金Project supported by the Foundation of Chinese National Petroleum Corporation for a Basic Research (No. 03A5050101).
文摘In this paper, the effect of catalytic support and sulfiding method on the chemical state of supported Co-Mo catalysts is studied by XPS. After sulfidation with in-situ method, the majority of molybdenum in CNT supported CoMo catalyst is transferred to a species with a formal chemical state Mo(IV) in MoS2 phase, and the rest to Mo(V) which consists of Mo coordinated both to O and S, such as MoO2S2-2 and MoO3S2-. In case of CoMo/-Al2O3 catalyst sulfided with in-situ method, a fraction of molybdenum is transferred to formal state Mo(IV) in the form of MoS2, but there is still a mount of unreduced Mo(VI) phase which is difficult to be sulfided. In CoMo/CNT cata-lytic system sulfided with ex-situ method, Mo(IV) in the form of MoS2 is detected along with a portion of unre-duced Mo(VI) phase, suggesting that not all the Mo phases are reduced and sulfided by ex-situ method. As for CoMo/-Al2O3, a portion of molybdenum is sulfided to intermediate reduced state Mo(V) which consists of Mo co-ordinated both to O and S, such as MoO2S2-2 and MoO3S2-, in addition, there is still a fraction of unreduced Mo(VI) phase. XPS analyses results suggest that CNT support facilitates the reduction and sulfidation of active species to a large extent, and that alumina support strongly interacts with active species, hereby producing a fraction of phase which resists complete sulfiding. Catalytic measurements of catalysts in the HDS of dibenzothiophene (DBT) show that CoMo/CNT catalysts are of higher HDS activity and selectivity than CoMo/-Al2O3 catalyst, which is in good relation with the sulfiding behavior of the corresponding catalyst.
文摘A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.
基金supported by the National High-Tech Research and Development Program (863) of China (No. 2008AA06XK1480855)
文摘Mo-modified Pd/Al2O3catalysts were prepared by an impregnation method and tested for the catalytic combustion of benzene. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), temperatureprogrammed desorption of NH3(NH3-TPD), H2temperature-programmed reduction(H2-TPR), and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM). The results showed that the addition of Mo effectively improved the activity and stability of the Pd/Al2O3catalyst by increasing the dispersion of Pd active components, changing the partial oxidation state of palladium and increasing the oxygen species concentration on the surface of catalyst. In the case of the Pd-Mo/Al2O3catalyst,benzene conversion of 90% was obtained at temperatures as low as 190°C, which was 45°C lower than that for similar performance with the Pd/Al2O3catalyst. Moreover, the 1.0% Pd-5% Mo/Al2O3catalyst was more active than the 2.0% Pd/Al2O3catalyst. It was concluded that Pd and Mo have a synergistic effect in benzene catalytic combustion.
基金financial support for this work from the Strategic Priority Research Program of CAS(XDB36030000)the National Natural Science Foundation of China(21422303,21573049,21872043,22002028)+3 种基金the National Basic Research Plan of China(2016YFA0201600)the Beijing Natural Science Foundation(2142036)the Youth Innovation Promotion Associationthe Special Program of “One Belt One Road”of CAS。
文摘The hierarchical structure of molybdenum disulfide(MoS2)nanosheet arrays stemmed from nickelcobalt layered double hydroxide(NiCo-LDH)/carbon cloth was prepared by growing the MoS_(2) nanosheet arrays onto the NiCo-LDH template which was pre-deposited onto the carbon cloth substrate.In this electrode configuration,carbon cloth is the three dimensional and conductive skeleton;NiCo-LDH nanosheets,as the template,ensure the oriented growth of MoS2 nanosheet arrays.Therefore,more MoS_(2) active sites are exposed and the catalyst exhibits good hydrogen evolution reaction activity.
基金financially supported by the High-degree Talent Introduction Program of Guangdong Academy of Sciences(No.2017GDASCX-0841)the Science and Technology Program of Guangzhou(No.201607020021)+2 种基金the National Natural Science Foundation of China(No.51304055)the Innovative Platform Construction Program of Guangdong Academy of Sciences(No.2017GDASCX-0109)the Pearl River Nova Program of Guangzhou(No.201806010016)
文摘The study of the leaching of vanadium(V) and molybdenum(Mo) from spent petrochemical catalysts in sodium hydroxide(NaO H) medium was performed using two approaches, namely, conventional leaching and microwave-assisted leaching methods. The influence of microwave power, leaching time, leaching temperature, and NaOH concentration on the leaching efficiency of spent petrochemical catalyst was investigated. Under microwave-assisted conditions(600 W, 10 min, 90°C, 2.0 mol·L^(-1) NaOH, and 0.20 g·mL^(-1) solid–liquid ratio), the leaching efficiencies of V and Mo reached 94.35% and 96.23%, respectively. It has been confirmed that microwave energy has considerable potential to enhance the efficiency of the leaching process and reduce the leaching time. It is suggested that the enhancement of the leaching efficiencies of V and Mo can be attributed to the existence of a thermal gradient between solid and liquid and the generation of cracks on the mineral surface.