In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat...In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process.展开更多
FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on th...FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.展开更多
Active iron catalysts with 5A molecular sieve as the carrier were prepared firstly, and then were used in the treatment of ammonia nitrogen in landfill leachate pretreated by MBR by using CWPO, finally the effects of ...Active iron catalysts with 5A molecular sieve as the carrier were prepared firstly, and then were used in the treatment of ammonia nitrogen in landfill leachate pretreated by MBR by using CWPO, finally the effects of preparation process of catalysts, assistants and reaction conditions on the removal rate of ammonia nitrogen were analyzed. The results show that the preparation process of catalysts and assistants had great effects on catalytic activity; when steeping fluid concentration was 2 mol/L and 0.01 mol/L cerium nitrate was used as an assistant, Fe-Ce/5A catalyst roasted for 3 h at 400 ~C had a good catalytic effect. As 10 g of Fe-Ce/5A catalyst was added to water sample, and landfill leachate pretreated by MBR reacted with 15 ml of H2 02 for 30 min at 60 ~C, the removal rate of ammonia nitrogen was up to 90.8%, that is, ammonia nitrogen concentra- tion decreased from 253 to 23 mg/L, reaching the national emission standard. Besides, the kinetic analysis of ammonia nitrogen removal reveals that the removal reaction of ammonia nitrogen conformed with pseudo first order kinetic equation. Thus, it is feasible to use this method to deeply treat landfill leachate pretreated by MBR.展开更多
Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active ca...Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.展开更多
The Cu-Fe/AC catalyst was prepared by microwave-assisted synthesis, and its morphological characteristics were characterized. The degradation effect of phenol wastewater by catalytic wet peroxide oxidation(CWPO) was s...The Cu-Fe/AC catalyst was prepared by microwave-assisted synthesis, and its morphological characteristics were characterized. The degradation effect of phenol wastewater by catalytic wet peroxide oxidation(CWPO) was studied, and the response surface methodology(RSM) was used to analyze the influencing factors of the removal rate of COD. The experimental results showed that under the conditions of reaction temperature 80 ℃, reaction time 90 min, initial pH 3.1 and H_(2)O_(2)addition 2.2 g/L, the removal rate of COD reached 82%. The results of response surface methodology indicated that under the conditions of reaction temperature 100 ℃, reaction time 64 min, initial pH 3.3 and H_(2)O_(2)addition 2.7 g/L, the removal rate of COD was up to 86%. After Cu-Fe/AC catalyst was reused for 4 times, the removal rate of COD was still above 80%, revealing that the catalyst showed good catalytic performance.展开更多
基金supported by the Key Research and Development Program of Shaanxi,China(2018GY-067).
文摘In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process.
基金funded by the National Natural Science Foundation of China (52100072)the Beijing Natural Science Foundation(8214056)+2 种基金the special fund of Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology,the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21021101)the National Key Research and Development Program of China (2019YFA0705803)Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010017006)。
文摘FeO;supported on activated carbon(AC) has been shown to be an ideal catalyst for catalytic wet peroxide oxidation(CWPO) due to its high CWPO reaction activity and stability. Although there have been some studies on the mechanism of Fe/AC catalysis in CWPO, the specific contribution of each component(surface oxygen groups and FeOxon AC) inside an Fe/AC catalyst and their corresponding reaction mechanism remain unclear, and the reaction stability of CWPO catalysts has rarely been discussed. Then the optimal CWPO catalyst in our laboratory, 3%Fe/AC, was selected.(1) By removing certain components on the AC through heat treatment, its contribution to the reaction and the corresponding reaction mechanism were investigated. With the aid of temperature-programmed desorption–mass spectrometry(TPD–MS) and the CWPO reaction, the normalized catalytic contributions of components were shown to be: 37.3%(carboxylic groups), 5.3%(anhydride), 19.3%(ether/hydroxyl),-71.4%(carbonyl groups) and 100%(FeOx),respectively. DFT calculation and EPR analysis confirmed that carboxylic groups and Fe_(2)O_(3) are able to activate the H_(2)O_(2) to generate·OH.(2) The catalysts at were characterized at different reaction times(0 h, 450 h, 900 h, 1350 h, and 1800 h) by TPD–MS and M?ssbauer spectroscopy. Results suggested that the number of carboxylic goups gradually increased and the size of paramagnetic Fe_(2)O_(3) particle crystallites gradually increased as the reactions progressed. The occurrence of strong interactions between metal oxides and AC was also confirmed. Due to these effects, the strong stability of 3%Fe/AC was further improved. Therefore, the reasons for the high activity and strong stability of 3%Fe/AC in CWPO were clearly shown. We believe that this work provides an idea of the removal of cresols from wastewater into the introduction to show the potential applications of CWPO.
基金Supported by the Project of Agricultural Key Programs for Science and Technology Development of Ningbo (2011C11006)Key Spark Program Project of Science and Technology Ministry (2012GA7010011)the Science and Technology Plan Project of Ningbo City,Zhejiang Province
文摘Active iron catalysts with 5A molecular sieve as the carrier were prepared firstly, and then were used in the treatment of ammonia nitrogen in landfill leachate pretreated by MBR by using CWPO, finally the effects of preparation process of catalysts, assistants and reaction conditions on the removal rate of ammonia nitrogen were analyzed. The results show that the preparation process of catalysts and assistants had great effects on catalytic activity; when steeping fluid concentration was 2 mol/L and 0.01 mol/L cerium nitrate was used as an assistant, Fe-Ce/5A catalyst roasted for 3 h at 400 ~C had a good catalytic effect. As 10 g of Fe-Ce/5A catalyst was added to water sample, and landfill leachate pretreated by MBR reacted with 15 ml of H2 02 for 30 min at 60 ~C, the removal rate of ammonia nitrogen was up to 90.8%, that is, ammonia nitrogen concentra- tion decreased from 253 to 23 mg/L, reaching the national emission standard. Besides, the kinetic analysis of ammonia nitrogen removal reveals that the removal reaction of ammonia nitrogen conformed with pseudo first order kinetic equation. Thus, it is feasible to use this method to deeply treat landfill leachate pretreated by MBR.
基金Science and Technical Department Innovation Fund and Graduate Student Innovation Project of Jiangsu Province.
文摘Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.
文摘The Cu-Fe/AC catalyst was prepared by microwave-assisted synthesis, and its morphological characteristics were characterized. The degradation effect of phenol wastewater by catalytic wet peroxide oxidation(CWPO) was studied, and the response surface methodology(RSM) was used to analyze the influencing factors of the removal rate of COD. The experimental results showed that under the conditions of reaction temperature 80 ℃, reaction time 90 min, initial pH 3.1 and H_(2)O_(2)addition 2.2 g/L, the removal rate of COD reached 82%. The results of response surface methodology indicated that under the conditions of reaction temperature 100 ℃, reaction time 64 min, initial pH 3.3 and H_(2)O_(2)addition 2.7 g/L, the removal rate of COD was up to 86%. After Cu-Fe/AC catalyst was reused for 4 times, the removal rate of COD was still above 80%, revealing that the catalyst showed good catalytic performance.