期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Catalytic performances of Ni/mesoporous SiO_2 catalysts for dry reforming of methane to hydrogen 被引量:5
1
作者 Fei Huang Rui Wang +3 位作者 Chao Yang Hafedh Driss Wei Chu Hui Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期709-719,共11页
Several mesoporous silicas with different morphologies were controllably prepared by sol-gel method with adjustable ratio of dual template, and they were further impregnated with aqueous solution of nickel nitrate, fo... Several mesoporous silicas with different morphologies were controllably prepared by sol-gel method with adjustable ratio of dual template, and they were further impregnated with aqueous solution of nickel nitrate, followed by calcination in air. The synthesized silica supports and supported nickel samples were characterized using N2-adsorption/desorption, X-ray diffraction (XRD), H2temperature-programmed reduction (H2-TPR), Scanning electron microscope (SEM), Transmission electron microscope (TEM) and thermo-gravimetric analysis (TGA-DTG) techniques. The Ni nanoparticles supported on shell-like silica are highly dispersed and yielded much narrower nickel particle-size than those on other mesoporous silica. The methane reforming with dioxide carbon reaction results showed that Ni nanoparticles supported on shell-like silica carrier exhibited the better catalytic performance and catalytic stability than those of nickel catalyst supported on other silica carrier. The thermo-gravimetric analysis on used nickel catalysts uncovered that catalyst deactivation depends on the type and nature of the coke deposited. The heterogeneous nature of the deposited coke was observed on nickel nanoparticles supported on spherical and peanut-like silica. Much narrower and lower TGA derivative peak was founded on Ni catalyst supported on the shell-like silica. © 2016 Science Press 展开更多
关键词 Carbon Catalyst activity Catalyst deactivation CATALYSTS catalytic reforming COKE Gravimetric analysis HYDROGEN Methane Nanoparticles Nickel Particle size Scanning electron microscopy Silica SOL gel process SOL GELS Solutions Thermogravimetric analysis Transmission electron microscopy X ray diffraction
下载PDF
Modelling of a tubular solid oxide fuel cell with different designs of indirect internal reformer 被引量:3
2
作者 P.Kim-Lohsoontorn F.Priyakorn +1 位作者 U.Wetwatana N.Laosiripojana 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第2期251-263,共13页
The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coa... The cell performance and temperature gradient of a tubular solid oxide fuel cell with indirect internal reformer (IIR-SOFC) fuelled by natural gas, containing a typical catalytic packed-bed reformer, a catalytic coated wall reformer, a catalytic annular reformer, and a novel catalytic annular-coated wall reformer were investigated with an aim to determine the most efficient internal reformer system. Among the four reformer designs, IIR-SOFC containing an annular-coated wall reformer exhibited the highest performance in terms of cell power density (0.67 W.cm 2) and electrical efficiency (68%) with an acceptable temperature gradient and a moderate pressure drop across the reformer (3.53 × 10 5 kPa). IIR-SOFC with an annular-coated wall reformer was then studied over a range of operating conditions: inlet fuel temperature, operating pressure, steam to carbon (S : C) ratio, gas flow pattern (co-flow and counter-flow pattern), and natural gas compositions. The simulation results showed that the temperature gradient across the reformer could not be decreased using a lower fuel inlet temperature (1223 K-1173 K) and both the power density and electrical efficiency of the cell also decreased by lowering fuel inlet temperature. Operating in higher pressure mode (1-10 bar) improved the temperature gradient and cell performance. Increasing the S : C ratio from 2 : 1 to 4:1 could decrease the temperature drop across the reformer but also decrease the cell performance. The average temperature gradient was higher and smoother in IIR-SOFC under a co-flow pattern than that under a counter-flow pattern, leading to lower overpotential and higher cell performance. Natural gas compositions significantly affected the cell performance and temperature gradient. Natural gas containing lower methane content provided smoother temperature gradient in the system but showed lower power density and electrical efficiency. 展开更多
关键词 indirect internal reforming solid oxide fuel cell annular-coated wall reformer packed-bed reformer catalytic coated wall reformer catalyticannular reformer
下载PDF
Investigation of the role of Ca(OH)2 in the catalytic Alkaline Thermal Treatment of cellulose to produce H2 with integrated carbon capture
3
作者 Maxim R.Stonor Nicholas Ouassil +1 位作者 Jingguang G.Chen Ah-Hyung Alissa Park 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期984-1000,共17页
The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a ca... The Alkaline Thermal Treatment(ATT)of biomass is one of the few biomass conversion processes that has a potential for BECCS(bio-energy with carbon capture and storage).Combining in-situ carbon capture withcreates a carbon-neutral process that has the potential to be carbon-negative.This study has shown that the conversion of cellulose tosuppressedcan be achieved through the reforming of gaseous intermediates in a fixed bed of 10%Ni/ZrO2.Reforming occurs at low temperatures≤773 K,which could allow for improved sustainability. 展开更多
关键词 Hydrogen Biomass Alkaline Thermal Treatment Calcium hydroxide Calcium carbonate Carbon capture utilization storage Nickel Heterogeneous catalysis catalytic reforming
下载PDF
Real-Time Optimization Model for Continuous Reforming Regenerator
4
作者 Jiang Shubao Jiang Hongbo +1 位作者 Li Zhenming Tian Jianhui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期90-103,共14页
An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal colloca... An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal collocation method is less time-consuming and more accurate,which can meet the requirement of real-time optimization(RTO).In this paper,the equation-oriented method combined with the orthogonal collocation method and the finite difference method is adopted to build the RTO model for catalytic reforming regenerator.The orthogonal collocation method was adopted to discretize the differential equations and sequential quadratic programming(SQP)algorithm was used to solve the algebraic equations.The rate constants,active energy and reaction order were estimated,with the sum of relative errors between actual value and simulated value serving as optimization objective function.The model can quickly predict the fields of component concentration,temperature and pressure inside the regenerator under different conditions,as well as the real-time optimized conditions for industrial reforming regenerator. 展开更多
关键词 catalytic reforming regenerator KINETICS model orthogonal collocation method real-time optimization
下载PDF
Polypropylene pyrolysis and steam reforming over Fe-based catalyst supported on activated carbon for the production of hydrogen-rich syngas 被引量:1
5
作者 Shuxiao Wang Yibo Sun +5 位作者 Rui Shan Jing Gu Taoli Huhe Xiang Ling Haoran Yuan Yong Chen 《Carbon Resources Conversion》 EI 2023年第3期173-182,共10页
The purpose of this study is to explore a method for the high-yield production of hydrogen by pyrolysis and steam reforming of polymer plastics.The developed Fe-based catalyst supported on activated carbon was applied... The purpose of this study is to explore a method for the high-yield production of hydrogen by pyrolysis and steam reforming of polymer plastics.The developed Fe-based catalyst supported on activated carbon was applied to reactions with polypropylene for hydrogen production.The effects of iron loading(%)in the catalyst,the total catalyst amount,and the water content in the reaction atmosphere on the performance of hydrogen and gas production were investigated.Under the optimal conditions,the hydrogen yield without water added reached 38.73 mmol/gPP,and this yield was significantly improved by adding water into the reaction atmosphere.By optimizing the amount of water added,the hydrogen yield reached 112.71 mmol/gPP.The surface morphology and structural components of the fresh and used catalysts were characterized,and the morphology and quantity of carbon deposition on the catalyst were analysed.The catalytic stability of the 15Fe/AC catalyst was determined by repeating the test 10 times under the optimal reaction conditions.As the reaction time increased,the selectivity of the catalyst for hydrogen decreased and that for hydrocarbons increased.Moreover,the experimental method used in this study had excellent hydrogen production capacity.Thus,this study provided a novel method for the high-efficiency production of hydrogen by pyrolysis and steam reforming of polymer plastics. 展开更多
关键词 H_(2)production catalytic reforming PYROLYSIS Plastic Carbon nanotubes
原文传递
Steam reforming of toluene as a tar model compound with modified nickel-based catalyst
6
作者 Omeralfaroug Khalifa Mingxin Xu +3 位作者 Rongjun Zhang Tahir Iqbal Mingfeng Li Qiang Lu 《Frontiers in Energy》 SCIE CSCD 2022年第3期492-501,共10页
Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a... Catalytic steam reforming is a promising route for tar conversion to high energy syngas in the process of biomass gasification. However, the catalyst deactivation caused by the deposition of residual carbon is still a major challenge. In this paper, a modified Ni-based Ni-Co/Al2O3-CaO (Ni-Co/AC) catalyst and a conventional Ni/Al2O3 (Ni/A) catalyst were prepared and tested for tar catalytic removal in which toluene was selected as the model component. Experiments were conducted to reveal the influences of the reaction temperature and the ratio between steam to carbon on the toluene conversion and the hydrogen yield. The physicochemical properties of the modified Ni-based catalyst were determined by a series of characterization methods. The results indicated that the Ni-Co alloy was determined over the Ni-Co/AC catalyst. The doping of CaO and the presence of Ni-Co alloy promoted the performance of toluene catalytic dissociation over Ni-Co/AC catalyst compared with that over Ni/A catalyst. After testing in steam for 40 h, the carbon conversion over Ni-Co/AC maintained above 86% and its resistance to carbon deposition was superior to Ni/A catalyst. 展开更多
关键词 catalytic steam reforming tar model compound Ni-based catalyst carbon resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部