As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in red...As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology.展开更多
Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)proce...Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.展开更多
Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purificati...Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purification, Fenton's reagent, ozonation, electrochemical and photocatalytic methods have been widely studied and applied in different aspects and have been reviewed by several articles. In recent years, some novel catalytic processes based on above processes have been developed for enhancing the efficiency of removing the organics from water. This review emphasized on the recent development of heterogeneous catalytic ozonation, electrocatalysis in respect of novel electrodes and electro-Fenton method, photoelectrocatalysis process and photoelectron-Fenton in water purification. It was also an attempt to propose general ideas about mechanism and principle enhancing the catalytic efficiency for the degradation and the mineralization of organics in water.展开更多
Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. H...Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. Hence, catalytic transformation of oils and fats was carried out in a laboratory-scale two-stage riser fluid catalytic cracking (TSRFCC) unit in this work. The results show that oils and fats can be used as FCC feed singly or co-feeding with vacuum gas oil (VGO), which can give high yield (by mass)of liquefied petroleum gas (LPG), C2-C4 oletms, tor example 45% LPG, 47% C2-C4 olefins, and 77.6% total liquid yield produced with palm oil cracking. Co-feeding with VGO gives a high yield of LPG (39.1%) and propylene (18.1%). And oxygen element content is very low (about 0.5%) in liquid products, hence, oxygen is removed in the form of H2O, CO and CO2. At the same time, high concentration of aromatics (C7-C9 aromatics predominantly) in the gasoline fraction is obtained after TSRFCC reaction of palm oil, as a result of large amount of hydrogen-transfer, cyclization and aromatization reactions, Additionally, most of properties of produced gasoline and diesel oil fuel meet the requirements of national standards, containing little sulfur. So TSRFCC technology is thought to be an alternative processing technology leading to production of clean fuels and light olefins.展开更多
Aiming at mercury and dioxin in fire coal gas as research objects,nonthermal plasma(NTP)catalytic technology was used to investigate the degradation effect of operating condition parameters on mixed pollutants in mixe...Aiming at mercury and dioxin in fire coal gas as research objects,nonthermal plasma(NTP)catalytic technology was used to investigate the degradation effect of operating condition parameters on mixed pollutants in mixed flue gas condition,and to explore the synergistic degradation of Hg0and TCB(1,2,3-trichlorobenzene,TCB)under mixed flue gas conditions.The research results showed that the conversion efficiency of mercury and TCB increased with the additional output of voltage,and decreased with the increase of the gas flow rate.Under optimal reaction conditions:voltage=17 k V,frequency=300 Hz,gas flow rate=21 min^(-1),the conversion efficiency of Hg^(0)and TCB reached the highest 91.4%and 84.98%,respectively.In the NTP catalytic system,active free radicals played an important role in the synergistic conversion of mercury and TCB,which have a competitive effect,to make the conversion efficiency of mixed pollutants lower than a single substance.In the mixed flue gas condition,the mixed gas has an inhibitory effect on the synergistic conversion of mercury and TCB.Kinetic modeling of NTP catalytic synergistic reaction was established.Under three conditions of TCB,mercury and TCB,mixed simulated flue gas,the NTP catalytic technology showed a quasi-firstorder kinetic reaction for the degradation of TCB.According to the synergistic effect of NTP and composites,the transformation and degradation of TCB mainly included two processes:TCB and ring opening,and Hg^(0)was finally oxidized to Hg^(2+).展开更多
基金financially supported by the National Natural Science Foundation of China(52174047)Sinopec Project(P21063-3)。
文摘As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology.
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601904).
文摘Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.
文摘Catalytic technologies have been paid increasing attention in refractory pollutants abatement due to its practical and potential values in water purification. As effective and efficient approaches for water purification, Fenton's reagent, ozonation, electrochemical and photocatalytic methods have been widely studied and applied in different aspects and have been reviewed by several articles. In recent years, some novel catalytic processes based on above processes have been developed for enhancing the efficiency of removing the organics from water. This review emphasized on the recent development of heterogeneous catalytic ozonation, electrocatalysis in respect of novel electrodes and electro-Fenton method, photoelectrocatalysis process and photoelectron-Fenton in water purification. It was also an attempt to propose general ideas about mechanism and principle enhancing the catalytic efficiency for the degradation and the mineralization of organics in water.
基金the Major Research Plan of PetroChina Company Limited (07-03D-01-01-02-02)
文摘Since the production cost of biodiesel is now the main hurdle limiting their applicability in some areas, catalytic cracking reactions represent an alternative route to utilization of vegetable oils and animal fats. Hence, catalytic transformation of oils and fats was carried out in a laboratory-scale two-stage riser fluid catalytic cracking (TSRFCC) unit in this work. The results show that oils and fats can be used as FCC feed singly or co-feeding with vacuum gas oil (VGO), which can give high yield (by mass)of liquefied petroleum gas (LPG), C2-C4 oletms, tor example 45% LPG, 47% C2-C4 olefins, and 77.6% total liquid yield produced with palm oil cracking. Co-feeding with VGO gives a high yield of LPG (39.1%) and propylene (18.1%). And oxygen element content is very low (about 0.5%) in liquid products, hence, oxygen is removed in the form of H2O, CO and CO2. At the same time, high concentration of aromatics (C7-C9 aromatics predominantly) in the gasoline fraction is obtained after TSRFCC reaction of palm oil, as a result of large amount of hydrogen-transfer, cyclization and aromatization reactions, Additionally, most of properties of produced gasoline and diesel oil fuel meet the requirements of national standards, containing little sulfur. So TSRFCC technology is thought to be an alternative processing technology leading to production of clean fuels and light olefins.
基金supported by National Natural Science Foundation of China(No.52270114)。
文摘Aiming at mercury and dioxin in fire coal gas as research objects,nonthermal plasma(NTP)catalytic technology was used to investigate the degradation effect of operating condition parameters on mixed pollutants in mixed flue gas condition,and to explore the synergistic degradation of Hg0and TCB(1,2,3-trichlorobenzene,TCB)under mixed flue gas conditions.The research results showed that the conversion efficiency of mercury and TCB increased with the additional output of voltage,and decreased with the increase of the gas flow rate.Under optimal reaction conditions:voltage=17 k V,frequency=300 Hz,gas flow rate=21 min^(-1),the conversion efficiency of Hg^(0)and TCB reached the highest 91.4%and 84.98%,respectively.In the NTP catalytic system,active free radicals played an important role in the synergistic conversion of mercury and TCB,which have a competitive effect,to make the conversion efficiency of mixed pollutants lower than a single substance.In the mixed flue gas condition,the mixed gas has an inhibitory effect on the synergistic conversion of mercury and TCB.Kinetic modeling of NTP catalytic synergistic reaction was established.Under three conditions of TCB,mercury and TCB,mixed simulated flue gas,the NTP catalytic technology showed a quasi-firstorder kinetic reaction for the degradation of TCB.According to the synergistic effect of NTP and composites,the transformation and degradation of TCB mainly included two processes:TCB and ring opening,and Hg^(0)was finally oxidized to Hg^(2+).