期刊文献+
共找到237篇文章
< 1 2 12 >
每页显示 20 50 100
A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater 被引量:2
1
作者 Bingxiao Feng Lining Hao +6 位作者 Chaoting Deng Jiaqiang Wang Hongbing Song Meng Xiao Tingting Huang Quanhong Zhu Hengjun Gai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期338-348,共11页
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing... Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater. 展开更多
关键词 Hydrothermal stability Ultra-dispersed copper-based catalyst catalytic wet air oxidation M-CRESOL Biological toxicity
下载PDF
Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation 被引量:1
2
作者 Yuxi Chai Yanan Zhang +6 位作者 Yannan Tan Zhiwei Li Huangzhao Wei Chenglin Sun Haibo Jin Zhao Mu Lei Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期80-88,共9页
There have been many studies on life cycle assessment in sewage treatment,but there are scarce few studies on the treatment of industrial wastewater in combination with advanced oxidation technology,especially in cata... There have been many studies on life cycle assessment in sewage treatment,but there are scarce few studies on the treatment of industrial wastewater in combination with advanced oxidation technology,especially in catalytic wet air oxidation(CWAO).There are no cases of using actual industrialized data onto life cycle assessment.This paper uses Simapro 9.0 software to establish a life cycle assessment model for the treatment of high-concentration organic wastewater by CWAO,and comprehensively explains the impact on the environment from three aspects:the construction phase,the operation phase and the demolition phase.In addition,sensitivity analysis and uncertainty analysis were performed.The results showed that the key factors affecting the environment were marine ecotoxicity,mineral resource consumption and global warming,the operation stage had the greatest impact on the environment,which was related to high power consumption during operation and emissions from the treatment process.Sensitivity analysis showed that electricity consumption has the greatest impact on abiotic depletion and freshwater aquatic ecotoxicity,and it also proved that global warming is mainly caused by pollutant emissions during operation phase.Monte Carlo simulations found slightly higher uncertainty for abiotic depletion and toxicity-related impact categories. 展开更多
关键词 Wastewater treatment High-concentration organic wastewater catalytic wet air oxidation Life-cycle assessment
下载PDF
Application of Catalytic Wet Air Oxidation to Treatment of Landfill Leachate on Co/Bi Catalyst 被引量:4
3
作者 LIHai-sheng LIULiang +3 位作者 ZHANGRong DONGDe-ming LIUHong-liang LIYu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第6期711-716,共6页
Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the T... Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the TOC and COD Cr removal rates were studied. The degradation kinetics of landfill leachate was also investigated and an exponential experiential model consisting of four influential factors was established to describe the reduction of the organic compounds in the landfill leachate. Meanwhile, the GC-MS technique was used to detect the components of the organic intermediates for the inference of the decomposition mechanisms of the organic compounds in landfill leachate. The results reveal that the reaction temperature and the catalyst dosage are the most important factors affecting the degradation reaction of the organic compounds and that the principal intermediates confirmed by GC-MS are organic acids at a percentage of more than 88% with no aldehydes or alcohols detected. The decomposition mechanisms of the organic compounds in landfill leachate were inferred based on the GC-MS information as follows: the activated gas phase O 2 captured the hydrogen of the organic pollutants to produce free radicals, which then initiated the catalytic reaction. So most of the organic compounds were oxidized into CO 2 and H 2O ultimately. In general, catalytic wet air oxidation over catalyst Co 3O 4/Bi 2O 3 was a very promising technique for the treatment of landfill leachate. 展开更多
关键词 catalytic wet air oxidation Organic compound Landfill leachate Decomposition mechanism
下载PDF
Catalytic wet air oxidation of phenol over RuO_2/γ-Al_2O_3 catalyst 被引量:3
4
作者 YANGShaoxia FENGYujie +3 位作者 CAIWeimin ZHUWanpeng JIANGZhanpeng WANJiafeng 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期131-137,共7页
A kind of CWAO catalyst, RuO_2/γ-Al_2O_3, was prepared by dipping Al_2O_3into the aqueous solution of RuCl_3·3H_2O. XRD, SEM and TEM were used to determine the catalyticstructure. Influences of the calcination t... A kind of CWAO catalyst, RuO_2/γ-Al_2O_3, was prepared by dipping Al_2O_3into the aqueous solution of RuCl_3·3H_2O. XRD, SEM and TEM were used to determine the catalyticstructure. Influences of the calcination temperature, the initial pH of the feed solution anddegradation temperature on the activity of the RuO_2/γ-Al_2O_3 catalyst were investigated and thereaction mechanism was preliminarily studied. Results showed that uniform dispersion of RuO_2crystallites was observed on the surface of the catalyst. The activity of the catalyst was higher atcalcination temperature of 300℃ for 3 h and the particle reunion occurred and some large RuO_2crystallites were abundant at high calcination temperature of 500℃ The activity of the catalyst wasbetter in the acid solution than in the alkaline solution. Increasing degradation temperature andusing the catalyst could shorten the induction periods so that the phenol and COD removal wereincreased. For RuO_2/γ-Al_2O_3 catalyst, the phenol and COD removal were respectively 98% and 80%in a temperature of 150℃, pH of 5.6 and pressure of 3 MPa after a 2 h reaction. This indicated thatRu/γ-Al_2O_3 catalyst had good activity. 展开更多
关键词 environmental engineering catalytic wet air oxidation wastewater treatment ruthenium catalyst
下载PDF
Pretreatment of apramycin wastewater by catalytic wet air oxidation 被引量:1
5
作者 YANGShao-xia FENGYu-jie +3 位作者 WANJia-feng LINQing-ying ZHUWan-peng JIANGZhan-peng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期623-626,共4页
The pretreatment technology of wet air oxidation(WAO) and coagulation and acidic hydrolysis for apramycin wastewater was investigated in this paper. The COD, apramycin, NH^+_4 concentration, and the ratio of BOD_5/COD... The pretreatment technology of wet air oxidation(WAO) and coagulation and acidic hydrolysis for apramycin wastewater was investigated in this paper. The COD, apramycin, NH^+_4 concentration, and the ratio of BOD_5/COD were analyzed, and the color and odor of the effluent were observed. WAO of apramycin wastewater, without catalyst and with RuO_2/Al_2O_3 and RuO_2-CeO_2/Al_2O_3 catalysts, was carried out at degradation temperature of 200℃ and the total pressure of 4 MPa in a 1 L batch reactor. The result showed that the apramycin removals were respectively 50 2% and 55 0%, COD removals were 40 0% and 46 0%, and the ratio of BOD_5/COD was increased to 0 49 and 0 54 with RuO_2/Al_2O_3 and RuO_2-CeO_2/Al_2O_3 catalysts in catylytic wet air oxidation(CWAO) after the reaction of 150 min. With the pretreatment of coagulation and acidic hydrolysis, COD and apramycin removals were slight decreased, and the ratio of BOD_5/COD was increased to 0 45, and the effluents was not suitable to biological treatment. The color and odor of the wastewater were effectively controlled and the reaction time was obviously shortened with WAO. HO_2· may promote organic compounds oxidized in WAO of the apramycin wastewater. The addition of CeO_2 could promote the activity and stability of RuO_2/Al_2O_3 in WAO of apramycin wastewater. 展开更多
关键词 catalytic wet air oxidation(cwao) metal catalyst antibiotic production wastewater apramycin wastewater
下载PDF
Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts 被引量:1
6
作者 WANJia-feng FENGYu-jie +2 位作者 CAIWei-min YANGShao-xia SUNXiao-jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第4期556-558,共3页
Four metal oxide catalysts composed of copper(Cu), stannum(Sn), copper-stannum(Cu-Sn) and copper-cerium(Cu-Ce) respectively were prepared by the co-impregnation method, and γ-alumina(γ-Al 2O 3) is selected as supp... Four metal oxide catalysts composed of copper(Cu), stannum(Sn), copper-stannum(Cu-Sn) and copper-cerium(Cu-Ce) respectively were prepared by the co-impregnation method, and γ-alumina(γ-Al 2O 3) is selected as support. A first-order kinetics model was established to study the catalytic wet air oxidation of phenol at different temperature when these catalysts were used. The model simulations are good agreement with present experimental data. Results showed that the reaction rate constants can be significantly increased when catalysts were used, and the catalyst of 6% Cu—10%Ce/γ-Al 2O 3 showed the best catalytic activity. This is consistent with the result of catalytic wet air oxidation of phenol and the COD removal can be arrived at 98.2% at temperature 210℃, oxygen partial pressure 3 MPa and reaction time 30 min. The activation energies of each reaction with different catalysts are nearly equal, which is found to be about 42 kJ/mol and the reaction in this study is proved to be kinetics control. 展开更多
关键词 catalytic wet air oxidation CATALYST PHENOL
下载PDF
Catalytic wet air oxidation for the treatment of emulsifying wastewater
7
作者 ZHAOJian-fu CHENLing +1 位作者 LUYi-cheng TANGWen-wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期576-579,共4页
The wet air oxidation(WAO) and catalytic WAO(CWAO) of the high strength emulsifying wastewater containing nonionic surfactants have been investigated in terms of COD and TOC removal. The WAO and homogeneous CWAO proce... The wet air oxidation(WAO) and catalytic WAO(CWAO) of the high strength emulsifying wastewater containing nonionic surfactants have been investigated in terms of COD and TOC removal. The WAO and homogeneous CWAO processes were carried out at the temperature from 433 K to 513 K, with initial oxygen pressure 1 2 MPa. It was found that homogeneous catalyst copper(Cu(NO_3)_2) had an fairly good catalytic activity for the WAO process, and the oxidation was catalyzed when the temperature was higher than 473 K. Moreover, several heterogeneous catalysts were proved to be effective for the WAO process. At the temperature 473 K, after 2 h reaction, WAO process could achieve about 75% COD removal and 66% TOC removal, while catalysts Cu/Al_2O_3 and Mn-Ce/Al_2O_3 elevated the COD removal up to 86%—89% and that of TOC up to 82%. However, complete elimination of COD and TOC was proved to be difficult even the best non-noble catalyst was used. Therefore, the effluent from WAO or CWAO process need to be further disposed. The bioassay proved that the effluent from WAO process was amenable to the biochemical method. 展开更多
关键词 CATALYST catalytic wet air oxidation emulsifying wastewater wet air oxidation
下载PDF
Structure, characterization, and dynamic performance of a wet air oxidation catalyst Cu–Fe–La/γ-Al_2O_3 被引量:1
8
作者 Yongli Zhang Feng Peng Yanbo Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1171-1177,共7页
A Cu–Fe–La/γ-Al_2O_3(CFLA) catalyst was prepared by the excessive impregnation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron ... A Cu–Fe–La/γ-Al_2O_3(CFLA) catalyst was prepared by the excessive impregnation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that the catalyst contained mostly Cu^(2+), Fe^(3+), and La^(3+)and a small amount of Cu^+, Fe^(2+), and La. The active components were uniformly distributed in the catalyst, and the particle size of the components was approximately 7.5 nm. The CFLA catalyst was used for the treatment of methyl orange(MO) solution by catalytic wet air oxidation(CWAO), and it exhibited a high catalytic activity. The catalytic reaction involved variable valence states of metals and free-radical reaction mechanism. The CWAO reaction of MO solution was fitted by a segmented first-order dynamic model, and the rapid reaction apparent activation energy was 13.9 k J·mol^(-1). 展开更多
关键词 catalytic wet air oxidation CATALYST ACTIVITY Reaction mechanism KINETICS Waste water
下载PDF
Role of Bismuth Oxide in Bi-MCo_2O_4(M=Co,Ni,Cu,Zn) Catalysts for Wet Air Oxidation of Acetic Acid 被引量:1
9
作者 JIANGPeng-bo CHENGTie-xin ZHUANGHong CUIXiang-hao BIYing-li ZHENKai-ji 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第3期358-361,共4页
Two series of cobalt(Ⅲ)\|containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acet... Two series of cobalt(Ⅲ)\|containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD,TEM,ESR,UV\|DRS and XPS,and the interaction between Co and Bi was studied as well. It has been found that nano\|sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)\|containing spinel are still maintained. The shift of the binding energy of Bi\-\{\%4f\%\-\{7/2\}\} is related to the catalytic activity of these catalysts doped with bismuth oxide. 展开更多
关键词 Cobalt(Ⅲ)-containing spinel Bismuth oxide catalytic wet air oxidation Acetic acid
下载PDF
Wet Air Oxidation of Organic Wastewater Catalyzed by Doped Ceria
10
作者 应跃芳 王月娟 +1 位作者 何军 罗孟飞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期249-252,共4页
The catalytic wet air oxidation (CWAO) of H acid and phenol was investigated in the presence of Cu or Fe doped CeOsolid solutions, which were obtained by sol-gel method. The experiment results showed that the incorpor... The catalytic wet air oxidation (CWAO) of H acid and phenol was investigated in the presence of Cu or Fe doped CeOsolid solutions, which were obtained by sol-gel method. The experiment results showed that the incorporation of Cu or Fe into the fluorite lattice of CeOstrongly enhanced the oxidation activity of the catalyst. At 90 ℃ and 0.1 MPa, H acid conversion was 70% for the Ce0.9Fe0.1O2-δ and 60% for the Ce0.9Cu0.1O2-δ catalyst. For phenol removal, the conversion was 70% for the Ce0.9Cu0.1O2-δ catalyst, while for the Ce0.9Fe0.1O2-δ the conversion was 30%. The results indicated that Ce0.9Cu0.1O2-δ was suitable for the treatment of organic wastewaters while Ce0.9Fe0.1O2-δ was suitable for the removal of H acid. The 70% phenol removal rate with Ce0.9Cu0.1O2-δ catalyst was markedly increased to 90% with Ce0.8Cu0.2O2-δ catalyst. However, the phenol removal reduced from 30% to 15% with Fe content increasing from 10% to 20%. For the H acid, the increase of the content of Cu or Fe tended to obviously increase the original reaction rate while the COD removal changed little. 展开更多
关键词 H acid PHENOL COD removal rate catalytic wet air oxidation rare earths
下载PDF
Fe salts as catalyst for the wet oxidation of o-chlorophenol 被引量:2
11
作者 徐新华 何平 +1 位作者 金剑 郝志伟 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第6期569-573,共5页
Catalytic wet air oxidation (CWAO) of o-chlorophenol in wastewater was studied in a stainless steel autoclave using four different Fe catalysts in the temperature range of 100?200 °C. Experimental results showed ... Catalytic wet air oxidation (CWAO) of o-chlorophenol in wastewater was studied in a stainless steel autoclave using four different Fe catalysts in the temperature range of 100?200 °C. Experimental results showed that high rate of o-chlorophenol and CODCr (Chemical Oxygen Demand, mg/L) removal by CWAO was obtained at relatively low temperature and pressure. The catalysts Fe2(SO4)3, FeSO4, Fe2O3 and FeCl3 all exhibited high catalytic activity. More than 93.7% of the initial CODCr and nearly 100% of o-chlorophenol were removed at 150 °C after 150 min with FeSO4 as catalyst. The CWAO of o-chlorophenol was found to be pseudo-first order reaction with respect to o-chlorophenol, with activation energy of 75.56 kJ/mol in the temperature range of 100-175 °C. 展开更多
关键词 FE O-CHLOROPHENOL catalytic wet air oxidation KINETIC
下载PDF
Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO:Process optimization and reaction kinetics
12
作者 Yingjie Song Shuqi Zhong +5 位作者 Yingjiao Li Kun Dong Yong Luo Guangwen Chu Haikui Zou Baochang Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期300-309,共10页
As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective... As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation. 展开更多
关键词 NANO-CUO Sodium lignosulfonate catalytic wet aerobic oxidation(cwao) Aromatic aldehyde Reaction kinetics
下载PDF
Use of catalytic wet air oxidation (CWAO) for pretreatment of high-salinity high-organic wastewater 被引量:4
13
作者 Wenjing Sun Hongxia Lv +7 位作者 Lei Ma Xiangdong Tan Chengyu Jin Huiling Wu Lili Chen Mengyang Liu Huangzhao Wei Chenglin Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第10期105-114,共10页
Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and was... Catalytic wet air oxidation(CWAO)coupled desalination technology provides a possibility for the effective and economic degradation of high salinity and high organic wastewater.Chloride widely occurs in natural and wastewaters,and its high content jeopardizes the efficacy of Advanced oxidation process(AOPs).Thus,a novel chlorine ion resistant catalyst Bsite Ru doped LaFe_(1-x)Ru_(x)O_(3-)δin CWAO treatment of chlorine ion wastewater was examined.Especially,LaFe_(0.85)Ru_(0.15)O_(3-δ)was 45.5% better than that of the 6%RuO_(2)@TiO_(2)(commercial carrier)on total organic carbon(TOC)removal.Also,doped catalysts LaFe_(1-x)Ru_(x)O_(3-)δshowed better activity than supported catalysts RuO_(2)@LaFeO_(3) and RuO_(2)@TiO_(2) with the same Ru content.Moreover,LaFe_(0.85)Ru_(0.15)O_(3-)δhas novel chlorine ion resistance no matter the concentration of Cl^(−) and no Ru dissolves after the reaction.X-ray diffraction(XRD)refinement,X-ray photoelectron spectroscopy(XPS),transmission electron microscope(TEM),and X-ray absorption fine structure(XAFS)measurements verified the structure of LaFe_(0.85)Ru_(0.15)O_(3-)δ.Kinetic data and density functional theory(DFT)proved that Fe is the site of acetic acid oxidation and adsorption of chloride ions.The existence of Fe in LaFe_(0.85)Ru_(0.15)O_(3-)δcould adsorb chlorine ion(catalytic activity inhibitor),which can protect the Ru site and other active oxygen species to exert catalytic activity.This work is essential for the development of chloride-resistant catalyst in CWAO. 展开更多
关键词 catalytic wet air oxidation Heterogeneous catalysis LaFe_(1-x)Ru_(x)O_(3-)δ Chlorine wastewater Salt resistance mechanism
原文传递
氧化剂对CWAO降解垃圾渗滤液中有机物的影响 被引量:9
14
作者 刘亮 李鱼 +3 位作者 刘光辉 王健 董德明 李海生 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第4期541-545,共5页
将催化湿式氧化技术应用于垃圾渗滤液中有机物的降解,着重研究了氧化剂(以氧分压表征)对降解效果的影响.结果表明:氧化剂是影响垃圾渗滤液中有机物降解反应的重要因素之一,随着氧分压的增大,催化氧化反应速率逐渐增加,其降解过程符合All... 将催化湿式氧化技术应用于垃圾渗滤液中有机物的降解,着重研究了氧化剂(以氧分压表征)对降解效果的影响.结果表明:氧化剂是影响垃圾渗滤液中有机物降解反应的重要因素之一,随着氧分压的增大,催化氧化反应速率逐渐增加,其降解过程符合Allometric方程(Y=aXb),但随着氧分压的增大,催化氧化反应速率增加的幅度逐渐减小,并分析了其原因. 展开更多
关键词 催化湿式氧化 垃圾渗滤液 有机物 氧化剂 动力学
下载PDF
LaFeO_(3)钙钛矿催化剂的制备及其对苯酚的降解处理
15
作者 刘鑫尧 张宣娇 +4 位作者 王健涛 张财顺 韩蛟 张磊 高志贤 《化学工业与工程》 CAS CSCD 北大核心 2024年第3期161-169,共9页
采用球磨、溶胶凝胶和共沉淀3种方法制备了LaFeO_(3)钙钛矿催化剂前驱体,通过改变焙烧温度获得了一系列LaFeO_(3)钙钛矿催化剂。利用XRD、FT-IR、N2物理吸脱附、H2-TPR和XPS等手段对催化剂的结构和性质进行了表征,并考察了其催化湿式空... 采用球磨、溶胶凝胶和共沉淀3种方法制备了LaFeO_(3)钙钛矿催化剂前驱体,通过改变焙烧温度获得了一系列LaFeO_(3)钙钛矿催化剂。利用XRD、FT-IR、N2物理吸脱附、H2-TPR和XPS等手段对催化剂的结构和性质进行了表征,并考察了其催化湿式空气氧化苯酚性能。结果表明,制备方法对催化性能有较大影响。同时低温还原能力强、氧空位多的催化剂催化活性较高。采用溶胶凝胶法,800℃焙烧制备的催化剂的催化活性较好,在反应温度为200℃,空气压力为5 MPa,苯酚初始浓度为4000 mg·L^(-1)的条件下,最终(240 min)的COD去除率为95.4%。 展开更多
关键词 钙钛矿 苯酚 催化湿式氧化 COD去除率
下载PDF
CWAO催化剂及其在废水处理中的应用 被引量:7
16
作者 张永利 王承智 胡筱敏 《安全与环境学报》 CAS CSCD 2004年第B06期87-89,共3页
催化湿式氧化技术是在高温高压条件下处理高浓度、有毒有害且难生物降解污染物的一种高级氧化技术。本文在检索了国内外大量参考文献的基础上,概述了催化湿式氧化技术的最新进展、机理及动力学,总结了催化湿式氧化技术中催化剂的分类、... 催化湿式氧化技术是在高温高压条件下处理高浓度、有毒有害且难生物降解污染物的一种高级氧化技术。本文在检索了国内外大量参考文献的基础上,概述了催化湿式氧化技术的最新进展、机理及动力学,总结了催化湿式氧化技术中催化剂的分类、组成、特点及其在废水处理中的应用,以期对有关研究者提供一定的借鉴作用。本文最后肯定并展望了催化湿式氧化技术是有广阔应用前景的水处理技术。 展开更多
关键词 湿式氧化 催化湿式氧化 催化剂 反应机理 动力学
下载PDF
印染废水CWAO法处理中均相催化剂的研制 被引量:4
17
作者 张永利 李亮 胡筱敏 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第8期1189-1192,共4页
为了制备用于催化湿式氧化法处理高浓度印染废水的催化剂,实验中以COD达2 000 mg.L-1的亚甲蓝水溶液作降解对象,用均相催化湿式氧化法进行处理,催化剂性能以COD去除率和脱色率进行评价.在对19种可溶盐进行普选的基础上,对双组分催化剂... 为了制备用于催化湿式氧化法处理高浓度印染废水的催化剂,实验中以COD达2 000 mg.L-1的亚甲蓝水溶液作降解对象,用均相催化湿式氧化法进行处理,催化剂性能以COD去除率和脱色率进行评价.在对19种可溶盐进行普选的基础上,对双组分催化剂进行复配.结果表明:铜盐和铁盐的催化活性居于前列,而硫酸铜和硫酸亚铁复配的Cu1Fe1催化剂在活性和成本上显示了优越性,同等条件下对水样的COD去除率比不加催化剂时提高约50%.对Cu1Fe1的作用机理分析表明,自由基反应以及Fe(Ⅲ)聚合物的混凝同时发挥了作用. 展开更多
关键词 污水处理 催化湿式氧化 催化剂 印染废水 亚甲蓝
下载PDF
Fe203-CeO2-Bi203/y-AI203 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions
18
作者 Pan Gaol Yuan Song +2 位作者 Shaoning Wang Claude Descorme Shaoxia Yang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第1期105-112,共8页
The Fe203-CeO2-Bi203/-A1203 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. T... The Fe203-CeO2-Bi203/-A1203 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe203-CeO2-]]i203/qt-A1203 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ. mo1-1. Hydroperoxy radicals (HO2.) and superoxide radicals (O2-) appeared as the main reactive species upon the CWAO of cationic red GTL. 展开更多
关键词 catalytic wet air oxidation cwao)Advanced oxidation processes (AOPs)Iron oxide catalystIndustrial wastewater
原文传递
钌催化剂在模拟印染废水CWAO法处理中的应用 被引量:3
19
作者 王庆雨 陈恩杰 +2 位作者 尚玲玲 徐慧瑜 张永利 《当代化工》 CAS 2012年第9期943-945,共3页
采用催化湿式氧化法对甲基橙模拟印染废水进行处理;催化剂的制备采用等量浸渍方法,以Cu、Fe为催化剂活性组分,Ce、La为催化助剂,加入贵金属钌制备多组分复合催化剂。研究了钌催化剂的加入对出水pH、吸光度和脱色率的影响。结果表明:加... 采用催化湿式氧化法对甲基橙模拟印染废水进行处理;催化剂的制备采用等量浸渍方法,以Cu、Fe为催化剂活性组分,Ce、La为催化助剂,加入贵金属钌制备多组分复合催化剂。研究了钌催化剂的加入对出水pH、吸光度和脱色率的影响。结果表明:加入钌催化剂处理后,出水pH呈先降低后升高的趋势,出水吸光度明显减小,脱色率增加显著,可达到98.3%。 展开更多
关键词 钌催化剂 模拟印染废水 催化湿式氧化 甲基橙 pH 吸光度 脱色率
下载PDF
CWAO法处理噻螨酮生产废水的催化剂研究 被引量:2
20
作者 王雪源 《工业水处理》 CAS CSCD 北大核心 2008年第10期44-47,共4页
以过渡金属氧化物CuO为主活性组分,通过加入第二活性组分MnO2和掺入电子助剂La2O3,研制出适用于催化湿式氧化(CWAO)法处理噻螨酮生产过程中产生的高浓度有机废水(CODCr 15 730mg/L)的复合催化剂。考察了浸渍液中各组分浓度、焙烧温度和... 以过渡金属氧化物CuO为主活性组分,通过加入第二活性组分MnO2和掺入电子助剂La2O3,研制出适用于催化湿式氧化(CWAO)法处理噻螨酮生产过程中产生的高浓度有机废水(CODCr 15 730mg/L)的复合催化剂。考察了浸渍液中各组分浓度、焙烧温度和焙烧时间等制备条件对催化剂的催化活性和稳定性的影响,确定了最佳制备条件。试验结果表明,该复合催化剂在处理此种有机废水时表现出较好的催化活性和稳定性。在230℃,氧气分压为2.5MPa和pH为7.3的条件下,催化湿式氧化该废水,在120min内,CODCr去除率达到96.1%,而在相同条件下未加催化剂的湿式氧化CODCr去除率只有50.3%。 展开更多
关键词 催化湿式氧化 催化剂 高浓度有机废水 废水处理
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部