In order to get some useful parameters for grid generation of catamaran, the CFD software FLUENT is used to investigate the main effects of grid generation on flow field calculation. The influences of some elements ar...In order to get some useful parameters for grid generation of catamaran, the CFD software FLUENT is used to investigate the main effects of grid generation on flow field calculation. The influences of some elements are investigated with a series of calculations in the present paper, and some alteratives are proposed. The proposed alteratives based on the analysis of the effects are used for a catamaran resistance calculation, comparisons of the calculated results with experimental data show good agreement. It shows that the research result of this paver is useful for the numerical calculation of catamaran.展开更多
In marine engineering,appendages such as fin stabilizers and/or T-foils are made to rotate and to reduce the motion of ships.Research on the hydrodynamics of ships fitted with active appendages has significantly impro...In marine engineering,appendages such as fin stabilizers and/or T-foils are made to rotate and to reduce the motion of ships.Research on the hydrodynamics of ships fitted with active appendages has significantly improved the design and control of such ships.However,most studies focus on fixed rather than rotating appendages,thereby ignoring the hydrodynamic unsteadiness of active appendages.To enhance the reliability and precision of the numerical simulations,we propose the use of overlapping grids for simulating advanced catamarans fitted with a pair of rotating T-foils under each bow.The fundamental purpose of the overlapping grid technique is to realize information exchange via regional overlap sharing in each subdomain of the computing domain,instead of using the method of boundary sharing,thus greatly alleviating the difficulty of generating the subdomain grid;moreover,the technique guarantees the quality of the subdomain grid.Within the main computational domain,a subdomain was allocated to accommodate the T-foil.Overlapping meshes near the interface between the two domains enable information flow during the simulation;the overlapping grids are updated at every iteration step because the subdomain rotates.The instantaneous trim and sinkage responses of the catamaran to the T-foil rotation were reproduced.From the moment the active T-foil stopped moving,there was no change in the ship’s sailing attitude,indicating that the response was in real time.By comparing with EFD data,the numerical results showed reasonable agreement,indicating the feasibility and effectiveness of the technique in simulating the hydrodynamics of ships fitted with active appendages.展开更多
In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate...In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate the local vibration modes in order to obtain the whole ship's mode shapes. In the post-processor, a lot of accessorial methods are adopted to eliminate the local vibrations, so that the whole ship's mode shapes can be identified. The modal analysis indicates that the dynamic reduction method fits for mode shapes identifying. In the end,the test results of a catamaran named Frederick G. Greed are used for reference to validate the obtained results. The comparison process shows that the results are credible. A special mode shape, which is quite different with that of conventional monohull ship, is also pointed out. The obtained results provide a valuable reference for the coming computation of catamaran's vihration characteristics.展开更多
A proper characterization of catamarans performance in relation to demi-hull separation ratio (Sc/L) is imperative for optimal design and applications. Resistance, propulsion and good sea-keeping characteristics for v...A proper characterization of catamarans performance in relation to demi-hull separation ratio (Sc/L) is imperative for optimal design and applications. Resistance, propulsion and good sea-keeping characteristics for various demi-hull separation ratios at different operating conditions are prime considerations. This work evaluates the Resistance and Propulsion (RAP) characteristics of a 72 m long catamaran for various values of Sc/L (0.3, 0.4 and 0.5). Both physical models and numerical methods are implemented for the analysis. The analysis shows that the frictional resistance (RF) of catamaran is parabolic and slightly higher than those of monohulls. However, catamarans have superior sea-keeping performance. The RF of catamaran dominates the total resistance (RT) at low speeds;however, at high Froude number (Fn > 0.25), wave-making resistance (Rw) becomes dominant, especially during humps. Consequently, the RT-curve and the effective power PE-curve oscillate in rhythm with the Rw-curve as the velocity increases. Again, the effect of residuary resistance interference due to demi-hulls separation ratio is marginal, except during humps. Also, four speed-regimes are identified such as: 1) Low-speed (Fn st hump (0.23 nd hump, high-speed (Fn > 0.60). The catamaran PE for Fn > 0.6 is very high and uneconomical. Therefore, for optimal performance, catamarans should have service speed limits not exceeding Fn = 0.6.展开更多
Present paper researches the theoretical method for calculating the wave resistance of wave piercing catamarans.As an example the wave resistance of a wave piercing csatamaran is calculated.The comparison among the th...Present paper researches the theoretical method for calculating the wave resistance of wave piercing catamarans.As an example the wave resistance of a wave piercing csatamaran is calculated.The comparison among the theoretical calculation results,the model test results and the diagram evaluation results shows the efficiency of present theoretical method.At last the dependence wave resistance of wave piercing catamarans on some parameters is investigated based on the theoretical method.展开更多
The method used to estimate the form factor of low-speed vessel will cause a large error when estimating the form factor of high-speed catamaran because of the interference effects. A method based on computational flu...The method used to estimate the form factor of low-speed vessel will cause a large error when estimating the form factor of high-speed catamaran because of the interference effects. A method based on computational fluid dynamics( CFD) method is proposed to estimate the form factor of high-speed catamaran with asymmetrical hulls. This paper focused on a 2000-toners catamaran with asymmetrical hulls to compare the difference between normal method and CFD method. The resistance of this catamaran is calculated by the CFD method,and it was compared to the model test data to verify the validity of this method. The form factors calculated by CFD method are very different from the results calculated by Prohaska method in high speed area.Thus,the method used to estimate the form factor of low-speed vessel is not applicative for high-speed catamaran. It is more accurate and efficient when using the CFD method to estimate the form factor of high-speed catamaran with asymmetrical hulls.展开更多
A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil...A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.展开更多
ωOne approach to support floating tidal current turbines is by using a moored catamaran, a barge type platform.Considering its low draft, one might expect that it performs best at typical straits with sea states of s...ωOne approach to support floating tidal current turbines is by using a moored catamaran, a barge type platform.Considering its low draft, one might expect that it performs best at typical straits with sea states of small wavelets to small waves. The problem is that the high rotational motion responses of the catamaran due to wave loads tend to reduce the turbine performance. This paper looks for a possibility to deteriorate these rotational responses by introducing a platform with four buoyant legs referred to as a quad-spar considering its good stability performance.The platforms are moored by four catenary cables as their mooring system. The motion response modeling was undertaken by Computational Fluid Dynamic(CFD) simulation based on three-dimensional potential flow theory.Considering sea states of straits with typical tidal current energy potentials, the environmental load was set on random wave with the significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s corresponding to the wave frequency,, of about 1.1 to 4.2 rad/s. This study found that lower motion responses can be satisfied by the quad-spar, in which its yaw, roll and pitch responses are on average about 5%, 44%, and 38%,respectively, compared to those of the catamaran. This result indicates that the quad-spar is more effective in reducing rotational motion responses needed to keep a high performance of the tidal current energy system.展开更多
In this paper,the effect of water and air fluids on the behavior of a planing catamaran in calm water was studied separately in calm water by using experimental and numerical methods.Experiments were conducted in a to...In this paper,the effect of water and air fluids on the behavior of a planing catamaran in calm water was studied separately in calm water by using experimental and numerical methods.Experiments were conducted in a towing tank over the Froude number range of 0.49–2.9 with two degrees of freedom.The model vessel displacement of 5.3 kg was implemented in experimental tests.Craft behavior was evaluated at the displacements of 5.3,4.6,and 4 kg by using the numerical method.The numerical simulation results for the hull’s resistance force were validated with similar experimental data.The fluid volume model was applied to simulate two-phase flow.The SST k-ωturbulence model was used to investigate the effect of turbulence on the catamaran.The results showed that in the planing mode,the contribution of air to pressure resistance increased by 55%,40%,and 60%at the mentioned displacements,whereas the contribution of air to friction resistance was less than 15%on average.The contribution of the air to the total lift force at the abovementioned displacements exceeded 70%,60%,and 50%in the planing mode but was less than 10%in the displacement mode.At the displacements of 5.3 and 4 kg,the area under the effect of maximum pressure moved around the center of gravity and caused porpoising longitudinal instability at the Froude numbers of 2.9 and 2.4,respectively.However,at the displacement of 4.6 kg,this effect did not occur,and the vessel maintained its stability.展开更多
Fast ferry catamarans have been in use for several decades. They possess the advantage of overcoming one of the major deficiencies of water transportation: low speed. Although their operation has spread throughout dif...Fast ferry catamarans have been in use for several decades. They possess the advantage of overcoming one of the major deficiencies of water transportation: low speed. Although their operation has spread throughout different parts of the world, an overall analysis of the implementation and failures of this technology remains underdeveloped in the transport literature. This paper presents and compares two unsuccessful experiences of the use of fast ferry catamarans in New Zealand and Hawaii. Although both attempts possess major differences in terms of their contexts, particularly regarding competition, regulatory and environmental issues, some of the common lessons learned from both experiences can significantly contribute to a better understanding of this water transport technology and the challenges involved in its operation.展开更多
基金Supported by the Foundation of Multihull Ship Technology,Key Laboratory of Fundamental Science for National Defence under Grant No.002010260737
文摘In order to get some useful parameters for grid generation of catamaran, the CFD software FLUENT is used to investigate the main effects of grid generation on flow field calculation. The influences of some elements are investigated with a series of calculations in the present paper, and some alteratives are proposed. The proposed alteratives based on the analysis of the effects are used for a catamaran resistance calculation, comparisons of the calculated results with experimental data show good agreement. It shows that the research result of this paver is useful for the numerical calculation of catamaran.
基金Supported by the National Natural Science Foundation of China(Grant No.51509053)
文摘In marine engineering,appendages such as fin stabilizers and/or T-foils are made to rotate and to reduce the motion of ships.Research on the hydrodynamics of ships fitted with active appendages has significantly improved the design and control of such ships.However,most studies focus on fixed rather than rotating appendages,thereby ignoring the hydrodynamic unsteadiness of active appendages.To enhance the reliability and precision of the numerical simulations,we propose the use of overlapping grids for simulating advanced catamarans fitted with a pair of rotating T-foils under each bow.The fundamental purpose of the overlapping grid technique is to realize information exchange via regional overlap sharing in each subdomain of the computing domain,instead of using the method of boundary sharing,thus greatly alleviating the difficulty of generating the subdomain grid;moreover,the technique guarantees the quality of the subdomain grid.Within the main computational domain,a subdomain was allocated to accommodate the T-foil.Overlapping meshes near the interface between the two domains enable information flow during the simulation;the overlapping grids are updated at every iteration step because the subdomain rotates.The instantaneous trim and sinkage responses of the catamaran to the T-foil rotation were reproduced.From the moment the active T-foil stopped moving,there was no change in the ship’s sailing attitude,indicating that the response was in real time.By comparing with EFD data,the numerical results showed reasonable agreement,indicating the feasibility and effectiveness of the technique in simulating the hydrodynamics of ships fitted with active appendages.
文摘In this paper,structural dynamic characteristics of a high-speed light special catamaran-wave piercing catamaran are analyzed using the FEA software MSC-NASTRAN. The dynamic reduction method is introduced to eliminate the local vibration modes in order to obtain the whole ship's mode shapes. In the post-processor, a lot of accessorial methods are adopted to eliminate the local vibrations, so that the whole ship's mode shapes can be identified. The modal analysis indicates that the dynamic reduction method fits for mode shapes identifying. In the end,the test results of a catamaran named Frederick G. Greed are used for reference to validate the obtained results. The comparison process shows that the results are credible. A special mode shape, which is quite different with that of conventional monohull ship, is also pointed out. The obtained results provide a valuable reference for the coming computation of catamaran's vihration characteristics.
文摘A proper characterization of catamarans performance in relation to demi-hull separation ratio (Sc/L) is imperative for optimal design and applications. Resistance, propulsion and good sea-keeping characteristics for various demi-hull separation ratios at different operating conditions are prime considerations. This work evaluates the Resistance and Propulsion (RAP) characteristics of a 72 m long catamaran for various values of Sc/L (0.3, 0.4 and 0.5). Both physical models and numerical methods are implemented for the analysis. The analysis shows that the frictional resistance (RF) of catamaran is parabolic and slightly higher than those of monohulls. However, catamarans have superior sea-keeping performance. The RF of catamaran dominates the total resistance (RT) at low speeds;however, at high Froude number (Fn > 0.25), wave-making resistance (Rw) becomes dominant, especially during humps. Consequently, the RT-curve and the effective power PE-curve oscillate in rhythm with the Rw-curve as the velocity increases. Again, the effect of residuary resistance interference due to demi-hulls separation ratio is marginal, except during humps. Also, four speed-regimes are identified such as: 1) Low-speed (Fn st hump (0.23 nd hump, high-speed (Fn > 0.60). The catamaran PE for Fn > 0.6 is very high and uneconomical. Therefore, for optimal performance, catamarans should have service speed limits not exceeding Fn = 0.6.
文摘Present paper researches the theoretical method for calculating the wave resistance of wave piercing catamarans.As an example the wave resistance of a wave piercing csatamaran is calculated.The comparison among the theoretical calculation results,the model test results and the diagram evaluation results shows the efficiency of present theoretical method.At last the dependence wave resistance of wave piercing catamarans on some parameters is investigated based on the theoretical method.
基金Sponsored by the National Basic Research Program of China(Grant No.2013CB036103)the Self Research Project of State Key Laboratory of Ocean Engineering:Piercing Pentamaran Advanced Research and Conceptual Design(Grant No.GKZD010056-1)
文摘The method used to estimate the form factor of low-speed vessel will cause a large error when estimating the form factor of high-speed catamaran because of the interference effects. A method based on computational fluid dynamics( CFD) method is proposed to estimate the form factor of high-speed catamaran with asymmetrical hulls. This paper focused on a 2000-toners catamaran with asymmetrical hulls to compare the difference between normal method and CFD method. The resistance of this catamaran is calculated by the CFD method,and it was compared to the model test data to verify the validity of this method. The form factors calculated by CFD method are very different from the results calculated by Prohaska method in high speed area.Thus,the method used to estimate the form factor of low-speed vessel is not applicative for high-speed catamaran. It is more accurate and efficient when using the CFD method to estimate the form factor of high-speed catamaran with asymmetrical hulls.
文摘A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H ∞ control performance, meanwhile. Finally, based on such a boat, HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.
基金financially supported by the Education of Master Degree Leading to Doctoral Program for Excellent Bachelor(PMDSU) Scheme (Grant No. 807/PKS/ITS/2018)the Post-graduate (Dissertation) Scheme (Grant No. 1233/PKS/ITS/2020)the Basic Research Scheme (Grant No. 1096/PKS/ITS/2020)。
文摘ωOne approach to support floating tidal current turbines is by using a moored catamaran, a barge type platform.Considering its low draft, one might expect that it performs best at typical straits with sea states of small wavelets to small waves. The problem is that the high rotational motion responses of the catamaran due to wave loads tend to reduce the turbine performance. This paper looks for a possibility to deteriorate these rotational responses by introducing a platform with four buoyant legs referred to as a quad-spar considering its good stability performance.The platforms are moored by four catenary cables as their mooring system. The motion response modeling was undertaken by Computational Fluid Dynamic(CFD) simulation based on three-dimensional potential flow theory.Considering sea states of straits with typical tidal current energy potentials, the environmental load was set on random wave with the significant wave height, Hs, of about 0.09 to 1.5 m and the wave period, T, of about 1.5 to 6 s corresponding to the wave frequency,, of about 1.1 to 4.2 rad/s. This study found that lower motion responses can be satisfied by the quad-spar, in which its yaw, roll and pitch responses are on average about 5%, 44%, and 38%,respectively, compared to those of the catamaran. This result indicates that the quad-spar is more effective in reducing rotational motion responses needed to keep a high performance of the tidal current energy system.
文摘In this paper,the effect of water and air fluids on the behavior of a planing catamaran in calm water was studied separately in calm water by using experimental and numerical methods.Experiments were conducted in a towing tank over the Froude number range of 0.49–2.9 with two degrees of freedom.The model vessel displacement of 5.3 kg was implemented in experimental tests.Craft behavior was evaluated at the displacements of 5.3,4.6,and 4 kg by using the numerical method.The numerical simulation results for the hull’s resistance force were validated with similar experimental data.The fluid volume model was applied to simulate two-phase flow.The SST k-ωturbulence model was used to investigate the effect of turbulence on the catamaran.The results showed that in the planing mode,the contribution of air to pressure resistance increased by 55%,40%,and 60%at the mentioned displacements,whereas the contribution of air to friction resistance was less than 15%on average.The contribution of the air to the total lift force at the abovementioned displacements exceeded 70%,60%,and 50%in the planing mode but was less than 10%in the displacement mode.At the displacements of 5.3 and 4 kg,the area under the effect of maximum pressure moved around the center of gravity and caused porpoising longitudinal instability at the Froude numbers of 2.9 and 2.4,respectively.However,at the displacement of 4.6 kg,this effect did not occur,and the vessel maintained its stability.
文摘Fast ferry catamarans have been in use for several decades. They possess the advantage of overcoming one of the major deficiencies of water transportation: low speed. Although their operation has spread throughout different parts of the world, an overall analysis of the implementation and failures of this technology remains underdeveloped in the transport literature. This paper presents and compares two unsuccessful experiences of the use of fast ferry catamarans in New Zealand and Hawaii. Although both attempts possess major differences in terms of their contexts, particularly regarding competition, regulatory and environmental issues, some of the common lessons learned from both experiences can significantly contribute to a better understanding of this water transport technology and the challenges involved in its operation.