Neon flying squid Ommastrephes batramii is widely distributed in the North Pacific Ocean, which has become the main fishing species for Chinese squid jigging fleets since 1993. Many authors have made the studies on th...Neon flying squid Ommastrephes batramii is widely distributed in the North Pacific Ocean, which has become the main fishing species for Chinese squid jigging fleets since 1993. Many authors have made the studies on the fields of fishing ground and its environment conditions. However, the squid catch per fishing vessel attained the highest level of about 550 t in 2004. In this paper, the catch and its distribution in 2004 would be compared with the previous year. Based on the catch data from Chinese squid jigging vessels and sea surface temperature with the format of 1 °latitude by 1 °longitude from May to November in 2004, the distribution maps were drawn by Marine explorer 4.0. The results show that the production in the east waters to 160°E was low during May and July. During October and November, the production in the waters from 150°E to 160°E was relatively higher, which occupied 62.5 percent of the total catch. During November, the production in the west waters to 150°E was also low. The highest CPUE area located in the west waters to 150°E, the next was the area from 150°E to 160°E and the lowest CPUE area located in the east waters to 160°E. The SST in the fishing ground seems to change seasonally. The suitable SST for each month is as follows: 12-14 ℃ in May, 15 ℃ - 16 ℃ in June, 14 ℃ - 16 ℃ in July, 18 ℃ - 19 ℃ in August, 16 ℃ -17 ℃ in September, 15 ℃- 16 ℃ in October and 12 ℃ - 13 ℃ in November. The result of K-S test shows that the above monthly suitable SST is considered as the indicator of looking for the main fishing ground.展开更多
Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions an...Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient “rocking-chair” ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, PF_6~- ions react with carbon nanotube yarn, while Li~+ ions react with an Al foil. The intercalation reaction between PF_6~- and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of “rocking-chair” type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of “rocking-chair” type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics.展开更多
Toroid formation is an important mechanism underlying DNA condensation, which has been investigated extensively by single-molecule experiments in vitro. Here, the de-condensation dynamics of DNA condensates were studi...Toroid formation is an important mechanism underlying DNA condensation, which has been investigated extensively by single-molecule experiments in vitro. Here, the de-condensation dynamics of DNA condensates were studied using magnetic tweezers combined with Brownian dynamics simulations. The experimental results revealed a surprising nonmonotonic dependence of the unfolding rate on the force applied under strong adhesion conditions, resembling the catchbond behavior reported in the field of ligand-receptor interactions. Simulation results showed that the different unfolding pathways of DNA condensate under large forces derive from the force-dependent deformation of the DNA toroid, which explains the catch-bond behavior of DNA condensate in the magnetic tweezers experiments. These results challenge the universality of the regular toroidal DNA unwrapping mechanism and provide the most complete description to date of multivalent cation-dependent DNA unwrapping under tension.展开更多
Flexible catch fences are widely used to protect infrastructure like railways, roads and buildings from rockfall damage. The wire meshes are the most critical components for catch fences as they dissipate most of the ...Flexible catch fences are widely used to protect infrastructure like railways, roads and buildings from rockfall damage. The wire meshes are the most critical components for catch fences as they dissipate most of the impact energy. Understanding their mechanical response is crucial for a catch fence design. This paper presents a new method for testing the wire meshes under rock impact. Wire meshes with different lengths can be used and the supporting cables can be readily installed in the tests. It is found that a smaller boulder causes more deformation localisation in the mesh. Longer mesh length makes the fence more flexible. Under the same impact condition, the longer mesh deforms more along the impact direction and shrinks more laterally. Supporting cables can reduce the lateral shrinkage of the mesh effectively. Most of the impact energy is dissipated by stretching of the wires.Wire breakage has not been observed.展开更多
Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate threshol...Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate thresholds of sustainable fishing for fished stocks to estimate the potential loss of catch and revenue of global fisheries as a result of overexploitation during the period of 1950–2010 in 14 FAO fishing areas. About 35% of stocks in the global marine ocean have or had suffered from overexploitation at present. The global catch losses amounted to 332.8 million tonnes over 1950–2010, resulting in a direct economic loss of US$298.9 billion(constant 2005 US$).Unsustainable fishing caused substantial potential losses worldwide, especially in the northern hemisphere.Estimated potential losses due to overfishing for different groups of resources showed that the low-value but abundant small-medium pelagics made the largest contribution to the global catch loss, with a weight of 265.0 million tonnes. The geographic expansion of overfishing not only showed serial depletion of world's fishery resources, but also reflected how recent trends towards sustainability can stabilize or reverse catch losses.Reduction of global fishing capacity and changes in fishery management systems are necessary if the long-term sustainability of marine fisheries in the world is to be achieved.展开更多
-On the basis of the data obtained from the surveys in the Bohai Sea during 1982-1983, this paper analysed and discussed the distribution and seasonal variation of primary productivity in the Bohai Sea, and the correl...-On the basis of the data obtained from the surveys in the Bohai Sea during 1982-1983, this paper analysed and discussed the distribution and seasonal variation of primary productivity in the Bohai Sea, and the correlations between the primary productivity and environmental factors. The organic carbon production and prospect of fishery production in the waters of this sea are estimated. It is shown that, there exists production patential in the Bohai Sea, the primary production is 112 gC/ (m2 ?a)the production of organic carbon being 10 million ton per year, the fishery yields 1 million ton and the maximum catch of sea products 0. 5 million ton. The results of the investigation can serve as the basic data for the exploitation, utilization and management of the fishery resources in the Bohai Sea.展开更多
The BRICS (Brazil, Russia, India, China and South Africa) and other emerging economies have become a driving global force for the past twenty years. However, their growth patterns are obsolete, impeding the quality ...The BRICS (Brazil, Russia, India, China and South Africa) and other emerging economies have become a driving global force for the past twenty years. However, their growth patterns are obsolete, impeding the quality and competitiveness of their economic growth, while simultaneously threatening the sustainability of their economic convergence with developed nations. Transforming the domestic growth pattern-the solution to the middle-income trap-has therefore become a key priority for each of these economies. This paper presents a comparative analysis of how to transform the pattern of economic growth in BRICS and achieve sustainable economic convergence with a comparative analysis of the pattern of economic growth and problems among BRICS countries.展开更多
文摘Neon flying squid Ommastrephes batramii is widely distributed in the North Pacific Ocean, which has become the main fishing species for Chinese squid jigging fleets since 1993. Many authors have made the studies on the fields of fishing ground and its environment conditions. However, the squid catch per fishing vessel attained the highest level of about 550 t in 2004. In this paper, the catch and its distribution in 2004 would be compared with the previous year. Based on the catch data from Chinese squid jigging vessels and sea surface temperature with the format of 1 °latitude by 1 °longitude from May to November in 2004, the distribution maps were drawn by Marine explorer 4.0. The results show that the production in the east waters to 160°E was low during May and July. During October and November, the production in the waters from 150°E to 160°E was relatively higher, which occupied 62.5 percent of the total catch. During November, the production in the west waters to 150°E was also low. The highest CPUE area located in the west waters to 150°E, the next was the area from 150°E to 160°E and the lowest CPUE area located in the east waters to 160°E. The SST in the fishing ground seems to change seasonally. The suitable SST for each month is as follows: 12-14 ℃ in May, 15 ℃ - 16 ℃ in June, 14 ℃ - 16 ℃ in July, 18 ℃ - 19 ℃ in August, 16 ℃ -17 ℃ in September, 15 ℃- 16 ℃ in October and 12 ℃ - 13 ℃ in November. The result of K-S test shows that the above monthly suitable SST is considered as the indicator of looking for the main fishing ground.
基金financial support obtained from the National Key Research and Development Program of China (2020YFB1312900)the National Natural Science Foundation of China (21975281)+1 种基金Key Research Project of Zhejiang lab (No. K2022NB0AC04)Jiangxi Double Thousand Talent Program (No. jxsq2020101008)。
文摘Artificial yarn muscles show great potential in applications requiring low-energy consumption while maintaining high performance. However, conventional designs have been limited by weak ion-yarn muscle interactions and inefficient “rocking-chair” ion migration. To address these limitations, we present an electrochemical artificial yarn muscle design driven by a dual-ion co-regulation system. By utilizing two reaction channels, this system shortens ion migration pathways, leading to faster and more efficient actuation. During the charging/discharging process, PF_6~- ions react with carbon nanotube yarn, while Li~+ ions react with an Al foil. The intercalation reaction between PF_6~- and collapsed carbon nanotubes allows the yarn muscle to achieve an energy-free high-tension catch state. The dual-ion coordinated yarn muscles exhibit superior contractile stroke, maximum contractile rate, and maximum power densities, exceeding those of “rocking-chair” type ion migration yarn muscles. The dual-ion co-regulation system enhances the ion migration rate during actuation, resulting in improved performance. Moreover, the yarn muscles can withstand high levels of isometric stress, displaying a stress of 61 times that of skeletal muscles and 8 times that of “rocking-chair” type yarn muscles at higher frequencies. This technology holds significant potential for various applications, including prosthetics and robotics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.1110434111474346+3 种基金11274374and 61275192)the National Key Basic Research Program of China(Grant No.2013CB837200)the Mechanobiology Institute at National University of Singapore
文摘Toroid formation is an important mechanism underlying DNA condensation, which has been investigated extensively by single-molecule experiments in vitro. Here, the de-condensation dynamics of DNA condensates were studied using magnetic tweezers combined with Brownian dynamics simulations. The experimental results revealed a surprising nonmonotonic dependence of the unfolding rate on the force applied under strong adhesion conditions, resembling the catchbond behavior reported in the field of ligand-receptor interactions. Simulation results showed that the different unfolding pathways of DNA condensate under large forces derive from the force-dependent deformation of the DNA toroid, which explains the catch-bond behavior of DNA condensate in the magnetic tweezers experiments. These results challenge the universality of the regular toroidal DNA unwrapping mechanism and provide the most complete description to date of multivalent cation-dependent DNA unwrapping under tension.
基金funded by the Knowledge Transfer Partnerships(KTP)programme and QTS Group Ltd.,a leading railway infrastructure services company in the UK(http://www.qtsgroup.com/).The project number is KTP 9980
文摘Flexible catch fences are widely used to protect infrastructure like railways, roads and buildings from rockfall damage. The wire meshes are the most critical components for catch fences as they dissipate most of the impact energy. Understanding their mechanical response is crucial for a catch fence design. This paper presents a new method for testing the wire meshes under rock impact. Wire meshes with different lengths can be used and the supporting cables can be readily installed in the tests. It is found that a smaller boulder causes more deformation localisation in the mesh. Longer mesh length makes the fence more flexible. Under the same impact condition, the longer mesh deforms more along the impact direction and shrinks more laterally. Supporting cables can reduce the lateral shrinkage of the mesh effectively. Most of the impact energy is dissipated by stretching of the wires.Wire breakage has not been observed.
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.
基金The National Natural Science Foundation of China under contract Nos NSFC41306127 and NSFC41276156the Funding Program for Outstanding Dissertations in Shanghai Ocean University+1 种基金the Funding Scheme for Training Young Teachers in Shanghai Colleges and Shanghai Leading Academic Discipline Project(Fisheries Discipline)the involvement of Y.Chen was supported by the SHOU International Center for Marine Studies and Shanghai 1000 Talent Program
文摘Many fish stocks in the world are depleted as a result of overexploitation, which reduces stock productivity and results in loss of potential yields. In this study we analyzed the catch trends and approximate thresholds of sustainable fishing for fished stocks to estimate the potential loss of catch and revenue of global fisheries as a result of overexploitation during the period of 1950–2010 in 14 FAO fishing areas. About 35% of stocks in the global marine ocean have or had suffered from overexploitation at present. The global catch losses amounted to 332.8 million tonnes over 1950–2010, resulting in a direct economic loss of US$298.9 billion(constant 2005 US$).Unsustainable fishing caused substantial potential losses worldwide, especially in the northern hemisphere.Estimated potential losses due to overfishing for different groups of resources showed that the low-value but abundant small-medium pelagics made the largest contribution to the global catch loss, with a weight of 265.0 million tonnes. The geographic expansion of overfishing not only showed serial depletion of world's fishery resources, but also reflected how recent trends towards sustainability can stabilize or reverse catch losses.Reduction of global fishing capacity and changes in fishery management systems are necessary if the long-term sustainability of marine fisheries in the world is to be achieved.
文摘-On the basis of the data obtained from the surveys in the Bohai Sea during 1982-1983, this paper analysed and discussed the distribution and seasonal variation of primary productivity in the Bohai Sea, and the correlations between the primary productivity and environmental factors. The organic carbon production and prospect of fishery production in the waters of this sea are estimated. It is shown that, there exists production patential in the Bohai Sea, the primary production is 112 gC/ (m2 ?a)the production of organic carbon being 10 million ton per year, the fishery yields 1 million ton and the maximum catch of sea products 0. 5 million ton. The results of the investigation can serve as the basic data for the exploitation, utilization and management of the fishery resources in the Bohai Sea.
基金Interim results for the state social science foundation key project "Raising Macro Regulation Level and Maintain Fast and Steady Economic Growth" (approve No. 09&ZD017) and "Funding Program for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality" (approve No. 00491162340 142).
文摘The BRICS (Brazil, Russia, India, China and South Africa) and other emerging economies have become a driving global force for the past twenty years. However, their growth patterns are obsolete, impeding the quality and competitiveness of their economic growth, while simultaneously threatening the sustainability of their economic convergence with developed nations. Transforming the domestic growth pattern-the solution to the middle-income trap-has therefore become a key priority for each of these economies. This paper presents a comparative analysis of how to transform the pattern of economic growth in BRICS and achieve sustainable economic convergence with a comparative analysis of the pattern of economic growth and problems among BRICS countries.