期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
复Contourlet和各向异性扩散的织物疵点图像降噪 被引量:1
1
作者 吴一全 万红 叶志龙 《智能系统学报》 CSCD 北大核心 2013年第3期214-219,共6页
图像降噪是织物疵点自动检测的首要步骤,其效果直接影响后续的图像分割、特征提取及识别结果.为进一步改善降噪性能,提出了一种基于复Contourlet变换和各向异性扩散的织物疵点图像降噪方法.首先通过复Contourlet变换将织物疵点图像分解... 图像降噪是织物疵点自动检测的首要步骤,其效果直接影响后续的图像分割、特征提取及识别结果.为进一步改善降噪性能,提出了一种基于复Contourlet变换和各向异性扩散的织物疵点图像降噪方法.首先通过复Contourlet变换将织物疵点图像分解成低频和高频分量;然后分别利用P_Laplace算子和Catte_PM模型进行相应的扩散;最后经复Contourlet逆变换重构疵点图像.大量实验结果表明,与小波阈值收缩和全变差扩散的混合方法、小波与PM模型扩散相结合的方法、Contourlet结合全变差和自适应对比度扩散的方法、非下采样Contourlet结合非线性扩散的方法相比,所提出的方法在主观视觉效果和客观定量评价指标上都有了较大的提高,更好地保留了织物图像的纹理细节信息,说明了其降噪能力更强,能够有效地抑制噪声. 展开更多
关键词 织物疵点检测 织物疵点图像 图像降噪 复Contourlet变换 各向异性扩散 P—Laplace算子 Catte—PM模型
下载PDF
Noise Reduction of Welding Defect Image Based on NSCT and Anisotropic Diffusion 被引量:4
2
作者 吴一全 万红 +1 位作者 叶志龙 刚铁 《Transactions of Tianjin University》 EI CAS 2014年第1期60-65,共6页
In order to reduce noise effectively in the welding defect image and preserve the minutiae information, a noise reduction method of welding defect image based on nonsubsampled contourlet transform(NSCT) and anisotropi... In order to reduce noise effectively in the welding defect image and preserve the minutiae information, a noise reduction method of welding defect image based on nonsubsampled contourlet transform(NSCT) and anisotropic diffusion is proposed. Firstly, an X-ray welding defect image is decomposed by NSCT. Then total variation(TV) model and Catte_PM model are used for the obtained low-pass component and band-pass components, respectively. Finally, the denoised image is synthesized by inverse NSCT. Experimental results show that, compared with the hybrid method of wavelet threshold shrinkage with TV diffusion, the method combining NSCT with P_Laplace diffusion, and the method combining contourlet with TV model and adaptive contrast diffusion, the proposed method has a great improvement in the aspects of subjective visual effect, peak signal-to-noise ratio(PSNR) and mean-square error(MSE). Noise is suppressed more effectively and the minutiae information is preserved better in the image. 展开更多
关键词 welding defect detection noise reduction nonsubsampled contourlet transform total variation model catte_pm model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部