期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
HYPERHOLOMORPHIC THEORY ON KAEHLER MANIFOLDS
1
作者 汤冬梅 钟同德 邱春晖 《Acta Mathematica Scientia》 SCIE CSCD 2012年第2期586-604,共19页
First of all, using the relations (2.3), (2.4), and (2.5), we define a complex Clifford algebra Wn and the Witt basis. Secondly, we utilize the Witt basis to define the operators δ and δ on Kaehler manifolds w... First of all, using the relations (2.3), (2.4), and (2.5), we define a complex Clifford algebra Wn and the Witt basis. Secondly, we utilize the Witt basis to define the operators δ and δ on Kaehler manifolds which act on Wn-valued functions. In addition, the relation between above operators and Hodge-Laplace opeator is argued. Then, the Borel-Pompeiu formulas for W-valued functions are derived through designing a matrix Dirac operator D and a 2 × 2 matrix-valued invariant integral kernel with the Witt basis. 展开更多
关键词 Kaehler manifolds complex Clifford algebra Witt basis matrix Dirac op-erator matrix cauchy-dirac kernel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部