期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Upper bounds for eigenvalues of Cauchy-Hankel tensors
1
作者 Wei MEI Qingzhi YANG 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第4期1023-1041,共19页
We present upper bounds of eigenvalues for finite and infinite dimensional Cauchy-Hankel tensors.It is proved that an m-order infinite dimensional Canchy-Hankel tensor defines a bounded and positively(m-1)-homogeneous... We present upper bounds of eigenvalues for finite and infinite dimensional Cauchy-Hankel tensors.It is proved that an m-order infinite dimensional Canchy-Hankel tensor defines a bounded and positively(m-1)-homogeneous operator from l^(1)into l^(p)(1<p<∞),and two upper bounds of corresponding positively homogeneous operator norms are given.Moreover,for a fourth-order real partially symmetric Cauchy-Hankel tensor,sufficient and necessary conditions of M-positive definiteness are obtained,and an upper bound of M-eigenvalue is also shown. 展开更多
关键词 cauchy-hankel tensor EIGENVALUES upper bound M-positive definite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部