期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
八元数函数的Cauchy-Kowalewski扩张和乘积 被引量:1
1
作者 廖建全 李兴民 《华南师范大学学报(自然科学版)》 CAS 2008年第1期33-39,共7页
通过八元数函数的Cauchy-Kowalewski扩张和Cauchy-Kowalewski乘积,得到了八元数分析中的2个扩张定理.作为应用,给出了某些八元数初等解析函数.
关键词 八元数 解析函数 cauchy-kowalewski扩张 cauchy-kowalewski乘积
下载PDF
The Analyticity for the Product of Analytic Functions on Octonions and Its Applications
2
作者 Jianquan Liao Jinxun Wang 《Advances in Pure Mathematics》 2017年第12期692-705,共14页
Given two left Oc-analytic functions f, g in some open set Ω of R8, we obtain some sufficient conditions for fg is also left Oc-analytic in Ω. Moreover, we prove?fλ that is a left Oc-analytic function for any const... Given two left Oc-analytic functions f, g in some open set Ω of R8, we obtain some sufficient conditions for fg is also left Oc-analytic in Ω. Moreover, we prove?fλ that is a left Oc-analytic function for any constants λ∈Oc if and only if is a complex Stein-Weiss conjugate harmonic system. Some applications and connections with Cauchy-Kowalewski product are also considered. 展开更多
关键词 OCTONIONS Oc-Analytic Functions Stein-Weiss Conjugate Harmonic System cauchy-kowalewski PRODUCT
下载PDF
Gevrey Well-Posedness of the Hyperbolic Prandtl Equations
3
作者 Wei-Xi Li Rui Xu 《Communications in Mathematical Research》 CSCD 2022年第4期605-624,共20页
We study 2D and 3D Prandtl equations of degenerate hyperbolic type,and establish without any structural assumption the Gevrey well-posedness with Gevrey index≤2.Compared with the classical parabolic Prandtl equations... We study 2D and 3D Prandtl equations of degenerate hyperbolic type,and establish without any structural assumption the Gevrey well-posedness with Gevrey index≤2.Compared with the classical parabolic Prandtl equations,the loss of the derivatives,caused by the hyperbolic feature coupled with the degeneracy,cannot be overcame by virtue of the classical cancellation mechanism that developed for the parabolic counterpart.Inspired by the abstract Cauchy-Kowalewski theorem and by virtue of the hyperbolic feature,we give in this text a straightforward proof,basing on an elementary L^(2)energy estimate.In particular our argument does not involve the cancellation mechanism used efficiently for the classical Prandtl equations. 展开更多
关键词 Hyperbolic Prandtl boundary layer WELL-POSEDNESS Gervey space abstract cauchy-kowalewski theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部