Cowpea Trypsin Inhibitor (CpTI) gene was transferred into the cotyle dons and hypocotyls of cauliflower by Agrobacterium-mediated transformation met hod. The best selective concentration of kanamycin (kan) was 15 mg L...Cowpea Trypsin Inhibitor (CpTI) gene was transferred into the cotyle dons and hypocotyls of cauliflower by Agrobacterium-mediated transformation met hod. The best selective concentration of kanamycin (kan) was 15 mg L-1. The con centration of carbencillin (carb) was 500 mg L-1. 14 transgenic cauliflower pla nts were obtained. The putative transformants were assayed by PCR and Southern b lotting analysis. The results indicated that CpTI gene was transferred into caul iflower successfully.展开更多
Cytoplasmic male sterility (CMS) is a maternally inherited trait that prevents the production of function pollen, but maintains female fertility. It has been widely used in breeding programs to product F_1 hybrid seed
Carotenoids and chlorophylls are among the most widely distributed pigments in nature that play essential roles in the photosynthetic apparatus and confer diverse colours in plants.Among all vegetables,cauliflower(Bra...Carotenoids and chlorophylls are among the most widely distributed pigments in nature that play essential roles in the photosynthetic apparatus and confer diverse colours in plants.Among all vegetables,cauliflower(Brassica oleracea L.ssp.var.botrytis)is rich in phytochemicals and is an important crop grown all over the world.This study investigates carotenoid and chlorophyll concentrations in differently pigmented cultivars and elucidates the role of transcriptional regulation of carotenoid accumulation including lutein andβ-carotene.Here,we characterised changes in pigments by UHPLC-DAD-ToF-MS and changes in transcript levels of carotenoid metabolic genes by qRT-PCR in florets and leaves of orange(‘Jaffa'and‘Sunset'),purple(‘Di Sicilia Violetto'and‘Graffiti'),green(‘Trevi')and white(‘Clapton')cultivars.Transcript levels of all carotenoid metabolic genes showed different transcript level patterns in the leaves and florets.Compared to the other cultivars,the orange cultivars had the highest levels ofβ-carotene in the florets and lutein in the leaves resulting in changes lutein/β-carotene ratios.In the green cultivar,higher transcript levels were also found,especially for phytoene synthase and phytoene desaturase genes of the core biosynthesis pathway.However,no increased carotenoid concentrations were observed,possibly due to a higher carotenoid turnover induced by the carotenoid cleavage dioxygenase 4 in the green cultivar.In the white(‘Clapton')and purple(‘Di Sicilia Violetto'and‘Graffiti')cultivars the phytoene desaturase transcript levels as well as carotenoid concentrations were low.Chlorophyll concentrations changed in trend comparable to the carotenoid concentrations and were only significantly lower in the leaves of the orange cultivar‘Jaffa'.Also,the chlorophyll a/b ratio changed in‘Jaffa'.In florets the highest chlorophylls concentrations were observed for the green cultivar(‘Trevi')and the purple cultivar(‘Di Sicilia Violetto').Taken together,the study demonstrates the complex source-sink relationship of carotenoid accumulation in different coloured cauliflower.展开更多
文摘Cowpea Trypsin Inhibitor (CpTI) gene was transferred into the cotyle dons and hypocotyls of cauliflower by Agrobacterium-mediated transformation met hod. The best selective concentration of kanamycin (kan) was 15 mg L-1. The con centration of carbencillin (carb) was 500 mg L-1. 14 transgenic cauliflower pla nts were obtained. The putative transformants were assayed by PCR and Southern b lotting analysis. The results indicated that CpTI gene was transferred into caul iflower successfully.
文摘Cytoplasmic male sterility (CMS) is a maternally inherited trait that prevents the production of function pollen, but maintains female fertility. It has been widely used in breeding programs to product F_1 hybrid seed
基金supported by the Federal Office for Agriculture and Food(BLE)of Germany[Grant No.2816DOKI07(Carcauli)]。
文摘Carotenoids and chlorophylls are among the most widely distributed pigments in nature that play essential roles in the photosynthetic apparatus and confer diverse colours in plants.Among all vegetables,cauliflower(Brassica oleracea L.ssp.var.botrytis)is rich in phytochemicals and is an important crop grown all over the world.This study investigates carotenoid and chlorophyll concentrations in differently pigmented cultivars and elucidates the role of transcriptional regulation of carotenoid accumulation including lutein andβ-carotene.Here,we characterised changes in pigments by UHPLC-DAD-ToF-MS and changes in transcript levels of carotenoid metabolic genes by qRT-PCR in florets and leaves of orange(‘Jaffa'and‘Sunset'),purple(‘Di Sicilia Violetto'and‘Graffiti'),green(‘Trevi')and white(‘Clapton')cultivars.Transcript levels of all carotenoid metabolic genes showed different transcript level patterns in the leaves and florets.Compared to the other cultivars,the orange cultivars had the highest levels ofβ-carotene in the florets and lutein in the leaves resulting in changes lutein/β-carotene ratios.In the green cultivar,higher transcript levels were also found,especially for phytoene synthase and phytoene desaturase genes of the core biosynthesis pathway.However,no increased carotenoid concentrations were observed,possibly due to a higher carotenoid turnover induced by the carotenoid cleavage dioxygenase 4 in the green cultivar.In the white(‘Clapton')and purple(‘Di Sicilia Violetto'and‘Graffiti')cultivars the phytoene desaturase transcript levels as well as carotenoid concentrations were low.Chlorophyll concentrations changed in trend comparable to the carotenoid concentrations and were only significantly lower in the leaves of the orange cultivar‘Jaffa'.Also,the chlorophyll a/b ratio changed in‘Jaffa'.In florets the highest chlorophylls concentrations were observed for the green cultivar(‘Trevi')and the purple cultivar(‘Di Sicilia Violetto').Taken together,the study demonstrates the complex source-sink relationship of carotenoid accumulation in different coloured cauliflower.