This paper describes various aspects of the design methodology and heat transfer calculations for an elevated linear absorber. The absorber is a part of the linear Fresnel reflector solar concentrator system, in which...This paper describes various aspects of the design methodology and heat transfer calculations for an elevated linear absorber. The absorber is a part of the linear Fresnel reflector solar concentrator system, in which hot fluid is generated. The design of the absorber is an inverted trapezoidal air cavity with a glass cover enclosing a multi tube absorber. In a trapezoidal cavity absorber, a set of linear multi tube absorber with plate(named as "plane surface") and without plate(named as "tube surface") underneath are considered. An analytical simulation is done for different gaps between the tubes and for different depths of the cavity. A better design of the absorber is found out to maximize the heat transfer rate supplied to the absorber tube fluid. Also, the experimentally obtained overall heat loss coefficients are compared with the analytical values for the considered arrangements of absorber set up and results are discussed in details.展开更多
Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 templa...Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 template. By changing the sizes of SiO_2 microspheres, a series of HFC microspheres with variable cavity sizes were obtained to study the relationship between cavity size and microwave absorbing(MA) performance for the first time. The morphology and structure of samples were characterized in detail. The results showed that the MA performance of HFC sample depended on its cavity size. In particular, the hollow structure was good for improving MA performance and could make MA move to the high-frequency region. More importantly, as the cavity size increases, the resonance frequency of HFC-i(i=1,2, 3, 4) samples moved to a low frequency, and the optimal matching thickness of HFC-i samples was increasing. Among all HFC-i samples, HFC-3 showed the most excellent MA performance,which could be mainly explained by the quarter-wavelength matching model, intrinsical magnetic and dielectric loss. Furthermore,the MA performance of HFC mixture blended by the equal mass fraction of HFC-2, HFC-3 and HFC-4 was the comprehensive results of three HFC-i samples. All the above suggested that the cavity size in HFC sample had a great influence on the MA performance.展开更多
文摘This paper describes various aspects of the design methodology and heat transfer calculations for an elevated linear absorber. The absorber is a part of the linear Fresnel reflector solar concentrator system, in which hot fluid is generated. The design of the absorber is an inverted trapezoidal air cavity with a glass cover enclosing a multi tube absorber. In a trapezoidal cavity absorber, a set of linear multi tube absorber with plate(named as "plane surface") and without plate(named as "tube surface") underneath are considered. An analytical simulation is done for different gaps between the tubes and for different depths of the cavity. A better design of the absorber is found out to maximize the heat transfer rate supplied to the absorber tube fluid. Also, the experimentally obtained overall heat loss coefficients are compared with the analytical values for the considered arrangements of absorber set up and results are discussed in details.
基金supported by the National Natural Science Foundation of China (20104017)the College Students’ Science and Technology Innovation Activities Plan of Zhejiang (2014R404056)
文摘Uniform core-shell SiO2@Fe_3O_4@C microspheres were prepared by a one-step hydrothermal method with SiO_2 microspheres as the template, and the hollow Fe_3O_4@C(HFC) microspheres were achieved via etching SiO_2 template. By changing the sizes of SiO_2 microspheres, a series of HFC microspheres with variable cavity sizes were obtained to study the relationship between cavity size and microwave absorbing(MA) performance for the first time. The morphology and structure of samples were characterized in detail. The results showed that the MA performance of HFC sample depended on its cavity size. In particular, the hollow structure was good for improving MA performance and could make MA move to the high-frequency region. More importantly, as the cavity size increases, the resonance frequency of HFC-i(i=1,2, 3, 4) samples moved to a low frequency, and the optimal matching thickness of HFC-i samples was increasing. Among all HFC-i samples, HFC-3 showed the most excellent MA performance,which could be mainly explained by the quarter-wavelength matching model, intrinsical magnetic and dielectric loss. Furthermore,the MA performance of HFC mixture blended by the equal mass fraction of HFC-2, HFC-3 and HFC-4 was the comprehensive results of three HFC-i samples. All the above suggested that the cavity size in HFC sample had a great influence on the MA performance.