According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly...According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly.展开更多
Background In the linac of Beijing Electron Positron Collider II(BEPCII),the resolution of existing BPMs is several hundred microns.But the requirement of transverse position resolution of BPM for future top-up inject...Background In the linac of Beijing Electron Positron Collider II(BEPCII),the resolution of existing BPMs is several hundred microns.But the requirement of transverse position resolution of BPM for future top-up injection needs to be more precise.Purpose This paper is mainly concerned about the design and simulation of the cavity beam position monitor(CBPM)for BEPCII linac and free electron laser(FEL).The requirement of beam transverse position resolution for linac is several microns,even a few nanometers for FEL.Methods When the beam bunch goes through the CBPM,it can excite different electromagnetic field modes in resonator.In these modes,TM_(110) is the most sensitive to beam transverse position offset.The design of CBPM is aim to analyze the relationship between TM_(110) and beam transverse position by CST Studio and Ansys HFSS.Conclusion In this research,we design a pair of rectangular slots for position cavity to revise the direction of electromagnetic field.The simulation result of theoretical resolution is able to reach 15 nm@1nC with the operating frequency 2500 MHz.It is obviously that CBPM has more excellent resolution than all of operating BPM in BEPCII.Meanwhile,the research of CBPM improves the application of beam detection technology in BEPCII and accumulates technology for future design of HEPS and FEL.The mechanical design of the prototype is being fabricated.展开更多
基金Projects(2007BAK22B04, 2006BAB02B05) supported by the National 11th Five-Year Science and Technology Supporting Plan of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘According to the mining method for Dongguashan Copper Mine and Tongkeng Mine in China, and with the help of the cavity monitoring system(CMS) and mining software Surpac, the 3D cavity models were established exactly. A series of correlative techniques for calculating stope over-excavation and under-excavation, stope dilution and ore loss rates, and the blasting design of the pillar with complicated irregular boundaries were developed. These techniques were applied in Dongguashan Copper Mine and Tongkeng Mine successfully. Using these techniques, the dilution rates of stopes 52-2^#, 52-6^#, 52-8^#and 52-10^# of Dongguashan Copper Mine are calculated to be 2.12%, 8.46%, 12-67% and 10.68%, respectively, and the ore loss rates of stopes 52-6^# and 5-8^# are 4.41% and 3.70%, severally. Furthermore, according to the design accomplished by the technique for a pillar of Tongkeng Mine with irregular boundary, the volume, total length of boreholes and the dynamite quantity of the pillar are computed to be 1.2 ×10^4 m^3, 2.98 km and 10.97 t, correspondingly.
基金the Major Projects of the Ministry of Science and Technology(Grant No.2016YFA040190301).
文摘Background In the linac of Beijing Electron Positron Collider II(BEPCII),the resolution of existing BPMs is several hundred microns.But the requirement of transverse position resolution of BPM for future top-up injection needs to be more precise.Purpose This paper is mainly concerned about the design and simulation of the cavity beam position monitor(CBPM)for BEPCII linac and free electron laser(FEL).The requirement of beam transverse position resolution for linac is several microns,even a few nanometers for FEL.Methods When the beam bunch goes through the CBPM,it can excite different electromagnetic field modes in resonator.In these modes,TM_(110) is the most sensitive to beam transverse position offset.The design of CBPM is aim to analyze the relationship between TM_(110) and beam transverse position by CST Studio and Ansys HFSS.Conclusion In this research,we design a pair of rectangular slots for position cavity to revise the direction of electromagnetic field.The simulation result of theoretical resolution is able to reach 15 nm@1nC with the operating frequency 2500 MHz.It is obviously that CBPM has more excellent resolution than all of operating BPM in BEPCII.Meanwhile,the research of CBPM improves the application of beam detection technology in BEPCII and accumulates technology for future design of HEPS and FEL.The mechanical design of the prototype is being fabricated.