Let S\-n be the symmetric group, g\++\-i=(123i),g\+-\-i=(1i32) and M\++\-n={g\++\-i∶4≤i≤n}, then M\++\-n is a minimal generating set of S\-n ,where n ≥5.It is proved that Cayley graph Cay( S\-...Let S\-n be the symmetric group, g\++\-i=(123i),g\+-\-i=(1i32) and M\++\-n={g\++\-i∶4≤i≤n}, then M\++\-n is a minimal generating set of S\-n ,where n ≥5.It is proved that Cayley graph Cay( S\-n,M\++\-n∪M\+-\-n) is Hamiltonian and edge symmetric.展开更多
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability o...In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on compficated graphs. Using this method, we calculate the probability of Continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t→∞ but for quantum state is not always satisfied.展开更多
In this paper, sharp upper bounds for the domination number, total domination number and connected domination number for the Cayley graph G = Cay(D2n, Ω) constructed on the finite dihedral group D2n, and a specified ...In this paper, sharp upper bounds for the domination number, total domination number and connected domination number for the Cayley graph G = Cay(D2n, Ω) constructed on the finite dihedral group D2n, and a specified generating set Ω of D2n. Further efficient dominating sets in G = Cay(D2n, Ω) are also obtained. More specifically, it is proved that some of the proper subgroups of D2n are efficient domination sets. Using this, an E-chain of Cayley graphs on the dihedral group is also constructed.展开更多
Let be a connected Cayley graph of group G, then Γ is called normal if the right regular representation of G is a normal subgroup of , the full automorphism group of Γ. For the case where G is a finite nonabelian si...Let be a connected Cayley graph of group G, then Γ is called normal if the right regular representation of G is a normal subgroup of , the full automorphism group of Γ. For the case where G is a finite nonabelian simple group and Γ is symmetric cubic Cayley graph, Caiheng Li and Shangjin Xu proved that Γ is normal with only two exceptions. Since then, the normality of nonsymmetric cubic Cayley graph of nonabelian simple group aroused strong interest of people. So far such graphs which have been known are all normal. Then people conjecture that all of such graphs are either normal or the Cayley subset consists of involutions. In this paper we give an negative answer by two counterexamples. As far as we know these are the first examples for the non-normal cubic nonsymmetric Cayley graphs of finite nonabelian simple groups.展开更多
We investigate the interaction between a ring R and the Cayley graph Cay(L(R)) of the semigroup of left ideals of R,as well as subdigraphs of this graph. Graph theoretic properties of these graphs are investigated,suc...We investigate the interaction between a ring R and the Cayley graph Cay(L(R)) of the semigroup of left ideals of R,as well as subdigraphs of this graph. Graph theoretic properties of these graphs are investigated,such as transitive closure,girth,radius,diameter,and spanning subgraphs.Conditions on certain of these graphs are given which imply that R is regular,left duo,or that the idempotents of R are central. We characterize simple rings in terms of Cay(L(R)). We characterize strongly regular rings in terms of a subdigraph of Cay(L(R)).展开更多
Complex networks have been a prominent topic of research for several years,spanning a wide range of fields from mathematics to computer science and also to social and biological sciences.The eigenvalues of the Seidel ...Complex networks have been a prominent topic of research for several years,spanning a wide range of fields from mathematics to computer science and also to social and biological sciences.The eigenvalues of the Seidel matrix,Seidel Signless Laplacian matrix,Seidel energy,Seidel Signless Laplacian energy,Maximum and Minimum energy,Degree Sum energy and Distance Degree energy of the Unitary Cayley graphs[UCG]have been calculated.Low-power devices must be able to transfer data across long distances with low delay and reliability.To overcome this drawback a small-world network depending on the unitary Cayley graph is proposed to decrease the delay and increase the reliability and is also used to create and analyze network communication.Small-world networks based on the Cayley graph have a basic construction and are highly adaptable.The simulation result shows that the small-world network based on unitary Cayley graphs has a shorter delay and is more reliable.Furthermore,the maximum delay is lowered by 40%.展开更多
Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers o...Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers of generalηizations of fuzzy graphs have been explored in the literature.Among the others,picture fuzzy graph(PFG)has its own importance.A picture fuzzy graph(PFG)is a pair G=(C,D)defined on a H^(*)=(A,B),where C=(ηC,θ_(C),■_(C))is a picture fuzzy set on A and D=(ηD,θ_(D),■_(D))is a picture fuzzy set over the set B∈A×A such that for any edge mn∈ B with ηD(m,n)≤min(ηC(m),ηC(n)),θD(m,n)≤min(θC(m),θC(n))and ■_(D)(m,n)≥max(■_(C)(m),■_(C)(n)).In this manuscript,we introduce the notion of the Cayley picture fuzzy graphs on groups which is the generalization of the picture fuzzy graphs.Firstly,we discuss few important characteristics of the Cayley picture fuzzy graphs.We show that Cayley picture fuzzy graphs are vertex transitive and hence regular.Then,we investigate different types of Cayley graphs induced by the Cayley picture fuzzy graphs by using different types of cuts.We extensively discuss the term connectivity of the Cayley picture fuzzy graphs.Vertex connectivity and edge connectivity of the Cayley picture fuzzy graphs are also addressed.We also investigate the linkage between these two.Throughout,we provide the extensions of some characηteristics of both the PFGs and Cayley fuzzy graphs in the setting of Cayley picture fuzzy graphs.Finally,we provide the model of interconnected networks based on the Cayley picture fuzzy graphs.展开更多
对于一类3p2(p是素数)阶群G=〈a,b,c ap=bp=c3=[a,b]=1,-c 1ac=a-rbr+1,-c 1bc=a,r>1,r3≡1(m od p)〉,研究了其连通4度C ay ley图的正规性,并通过其点稳定子的结构证明G的连通4度C ay ley图均正规。鉴于王艳丽等人的相关工作,这等...对于一类3p2(p是素数)阶群G=〈a,b,c ap=bp=c3=[a,b]=1,-c 1ac=a-rbr+1,-c 1bc=a,r>1,r3≡1(m od p)〉,研究了其连通4度C ay ley图的正规性,并通过其点稳定子的结构证明G的连通4度C ay ley图均正规。鉴于王艳丽等人的相关工作,这等于圆满解决了3p2阶群的连通4度C ay ley图的正规性问题。展开更多
文摘Let S\-n be the symmetric group, g\++\-i=(123i),g\+-\-i=(1i32) and M\++\-n={g\++\-i∶4≤i≤n}, then M\++\-n is a minimal generating set of S\-n ,where n ≥5.It is proved that Cayley graph Cay( S\-n,M\++\-n∪M\+-\-n) is Hamiltonian and edge symmetric.
文摘In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on compficated graphs. Using this method, we calculate the probability of Continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t→∞ but for quantum state is not always satisfied.
文摘In this paper, sharp upper bounds for the domination number, total domination number and connected domination number for the Cayley graph G = Cay(D2n, Ω) constructed on the finite dihedral group D2n, and a specified generating set Ω of D2n. Further efficient dominating sets in G = Cay(D2n, Ω) are also obtained. More specifically, it is proved that some of the proper subgroups of D2n are efficient domination sets. Using this, an E-chain of Cayley graphs on the dihedral group is also constructed.
文摘Let be a connected Cayley graph of group G, then Γ is called normal if the right regular representation of G is a normal subgroup of , the full automorphism group of Γ. For the case where G is a finite nonabelian simple group and Γ is symmetric cubic Cayley graph, Caiheng Li and Shangjin Xu proved that Γ is normal with only two exceptions. Since then, the normality of nonsymmetric cubic Cayley graph of nonabelian simple group aroused strong interest of people. So far such graphs which have been known are all normal. Then people conjecture that all of such graphs are either normal or the Cayley subset consists of involutions. In this paper we give an negative answer by two counterexamples. As far as we know these are the first examples for the non-normal cubic nonsymmetric Cayley graphs of finite nonabelian simple groups.
文摘We investigate the interaction between a ring R and the Cayley graph Cay(L(R)) of the semigroup of left ideals of R,as well as subdigraphs of this graph. Graph theoretic properties of these graphs are investigated,such as transitive closure,girth,radius,diameter,and spanning subgraphs.Conditions on certain of these graphs are given which imply that R is regular,left duo,or that the idempotents of R are central. We characterize simple rings in terms of Cay(L(R)). We characterize strongly regular rings in terms of a subdigraph of Cay(L(R)).
文摘Complex networks have been a prominent topic of research for several years,spanning a wide range of fields from mathematics to computer science and also to social and biological sciences.The eigenvalues of the Seidel matrix,Seidel Signless Laplacian matrix,Seidel energy,Seidel Signless Laplacian energy,Maximum and Minimum energy,Degree Sum energy and Distance Degree energy of the Unitary Cayley graphs[UCG]have been calculated.Low-power devices must be able to transfer data across long distances with low delay and reliability.To overcome this drawback a small-world network depending on the unitary Cayley graph is proposed to decrease the delay and increase the reliability and is also used to create and analyze network communication.Small-world networks based on the Cayley graph have a basic construction and are highly adaptable.The simulation result shows that the small-world network based on unitary Cayley graphs has a shorter delay and is more reliable.Furthermore,the maximum delay is lowered by 40%.
文摘Theory of the Cayley graphs is directly linked with the group theory.However,if there are uncertainties on the vertices or edges or both then fuzzy graphs have an extraordinary importance.In this perspective,numbers of generalηizations of fuzzy graphs have been explored in the literature.Among the others,picture fuzzy graph(PFG)has its own importance.A picture fuzzy graph(PFG)is a pair G=(C,D)defined on a H^(*)=(A,B),where C=(ηC,θ_(C),■_(C))is a picture fuzzy set on A and D=(ηD,θ_(D),■_(D))is a picture fuzzy set over the set B∈A×A such that for any edge mn∈ B with ηD(m,n)≤min(ηC(m),ηC(n)),θD(m,n)≤min(θC(m),θC(n))and ■_(D)(m,n)≥max(■_(C)(m),■_(C)(n)).In this manuscript,we introduce the notion of the Cayley picture fuzzy graphs on groups which is the generalization of the picture fuzzy graphs.Firstly,we discuss few important characteristics of the Cayley picture fuzzy graphs.We show that Cayley picture fuzzy graphs are vertex transitive and hence regular.Then,we investigate different types of Cayley graphs induced by the Cayley picture fuzzy graphs by using different types of cuts.We extensively discuss the term connectivity of the Cayley picture fuzzy graphs.Vertex connectivity and edge connectivity of the Cayley picture fuzzy graphs are also addressed.We also investigate the linkage between these two.Throughout,we provide the extensions of some characηteristics of both the PFGs and Cayley fuzzy graphs in the setting of Cayley picture fuzzy graphs.Finally,we provide the model of interconnected networks based on the Cayley picture fuzzy graphs.
文摘对于一类3p2(p是素数)阶群G=〈a,b,c ap=bp=c3=[a,b]=1,-c 1ac=a-rbr+1,-c 1bc=a,r>1,r3≡1(m od p)〉,研究了其连通4度C ay ley图的正规性,并通过其点稳定子的结构证明G的连通4度C ay ley图均正规。鉴于王艳丽等人的相关工作,这等于圆满解决了3p2阶群的连通4度C ay ley图的正规性问题。