Ndarugu River, Kenya, during its course through the different agricultural and industrial areas of Gatundu, Gachororo and Juja farms, receives untreated industrial, domestic and agricultural waste of point source disc...Ndarugu River, Kenya, during its course through the different agricultural and industrial areas of Gatundu, Gachororo and Juja farms, receives untreated industrial, domestic and agricultural waste of point source discharges from coffee and tea factories. During wet season the water is also polluted by non-point (diffuse) sources created by runoff carrying soil, fertilizer and pesticide residues from the catchment area. This study involved the calibration of water quality model QUAL2K to predict the water quality of this segment of the river. The model was calibrated and validated for flow discharge (Q), temperature (T°), flow velocity (V), biochemical oxygen demand (BOD5), dissolved oxygen (DO) and nitrate (NO3-N), using data collected and analyzed during field and laboratory measurements done in July and November-December 2013. The model was then used in simulation and its performance was evaluated using statistical criteria based on correlation coefficient (R2) and standard errors (SE) between the observed and simulated data. The model reflected the field data quite well with minor exceptions. In spite of these minor differences between the measured and simulated data set at some points, the calibration and validation results are acceptable especially for developing countries where the financial resources for frequent monitoring works and higher accuracy data analysis are very limited. The water is being polluted by the human activities in the catchment. There is need for proper control of wastewater by various techniques, and preliminary treatment of waste discharges prior to effluent disposal. Management of the watershed is necessary so as to protect the river from the adverse impacts of agricultural activities and save it from further deterioration.展开更多
River Ghataprabha, during its course through Belgaum district in Karnataka state (India), receives untreated domestic waste from Gokak town and other neighboring villages situated on the bank of the river. The prese...River Ghataprabha, during its course through Belgaum district in Karnataka state (India), receives untreated domestic waste from Gokak town and other neighboring villages situated on the bank of the river. The present study involves the application of water quality model QUAL2K to predict the water quality of this polluted segment of the river. The model was calibrated and validated for biochemical oxygen demand (BOD), dissolved oxygen (DO) and total nitrogen (TN) in pre-monsoon season. Data for calibration and validation were obtained after the field and laboratory measurements. The performance of the model was evaluated using statistics based on standard errors (SE) and mean multiplicative errors (MME). The model represented the field data quite well with some exceptions. In spite of some differences between the measured and simulated data sets at some points, the calibration and validation results are acceptable especially for the developing countries where the financial resources are often limited for frequent monitoring campaigns and higher accuracy data analysis.展开更多
In this work, Coffee husk (CH) was used as a solid phase extractor (SPE) for removal and/or minimization of Zn2+ and Ni2+ ions in aqueous media. XRD, FESEM and FTIR analysis of the SPE were performed for surface morph...In this work, Coffee husk (CH) was used as a solid phase extractor (SPE) for removal and/or minimization of Zn2+ and Ni2+ ions in aqueous media. XRD, FESEM and FTIR analysis of the SPE were performed for surface morphology and function groups characterisation. Batch mode adsorption studies were performed by varying the operational parameters such as adsorbent dose, solution pH, initial analyte concentration and contact time. The equilibrium data of both analytes was found a better fit with the Langmuir and Freundlich isotherm models. The qm of Langmuir for Zn2+ and Ni2+ ions were 12.987 and 11.11 mg/g, respectively. The adsorption capacities of the CH adsorbent towards Zn2+ and Ni2+ resulted of 12.53 and 10.33 mg/g, respectively. In addition, the kinetic data of Zn2+ and Ni2+ ions uptake revealed that the present system fitted well with pseudo-second-order kinetic model (R2 > 0.99). Thermodynamic studies showed that the retention step was exothermic, and spontaneous in nature. The results indicated that the coffee husk provides an effective and economical approach in highly reducing or almost eradication of both metals Zn2+ and Ni2+ from the aqueous solution.展开更多
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the...TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.展开更多
Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synt...Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.展开更多
文摘Ndarugu River, Kenya, during its course through the different agricultural and industrial areas of Gatundu, Gachororo and Juja farms, receives untreated industrial, domestic and agricultural waste of point source discharges from coffee and tea factories. During wet season the water is also polluted by non-point (diffuse) sources created by runoff carrying soil, fertilizer and pesticide residues from the catchment area. This study involved the calibration of water quality model QUAL2K to predict the water quality of this segment of the river. The model was calibrated and validated for flow discharge (Q), temperature (T°), flow velocity (V), biochemical oxygen demand (BOD5), dissolved oxygen (DO) and nitrate (NO3-N), using data collected and analyzed during field and laboratory measurements done in July and November-December 2013. The model was then used in simulation and its performance was evaluated using statistical criteria based on correlation coefficient (R2) and standard errors (SE) between the observed and simulated data. The model reflected the field data quite well with minor exceptions. In spite of these minor differences between the measured and simulated data set at some points, the calibration and validation results are acceptable especially for developing countries where the financial resources for frequent monitoring works and higher accuracy data analysis are very limited. The water is being polluted by the human activities in the catchment. There is need for proper control of wastewater by various techniques, and preliminary treatment of waste discharges prior to effluent disposal. Management of the watershed is necessary so as to protect the river from the adverse impacts of agricultural activities and save it from further deterioration.
文摘River Ghataprabha, during its course through Belgaum district in Karnataka state (India), receives untreated domestic waste from Gokak town and other neighboring villages situated on the bank of the river. The present study involves the application of water quality model QUAL2K to predict the water quality of this polluted segment of the river. The model was calibrated and validated for biochemical oxygen demand (BOD), dissolved oxygen (DO) and total nitrogen (TN) in pre-monsoon season. Data for calibration and validation were obtained after the field and laboratory measurements. The performance of the model was evaluated using statistics based on standard errors (SE) and mean multiplicative errors (MME). The model represented the field data quite well with some exceptions. In spite of some differences between the measured and simulated data sets at some points, the calibration and validation results are acceptable especially for the developing countries where the financial resources are often limited for frequent monitoring campaigns and higher accuracy data analysis.
文摘In this work, Coffee husk (CH) was used as a solid phase extractor (SPE) for removal and/or minimization of Zn2+ and Ni2+ ions in aqueous media. XRD, FESEM and FTIR analysis of the SPE were performed for surface morphology and function groups characterisation. Batch mode adsorption studies were performed by varying the operational parameters such as adsorbent dose, solution pH, initial analyte concentration and contact time. The equilibrium data of both analytes was found a better fit with the Langmuir and Freundlich isotherm models. The qm of Langmuir for Zn2+ and Ni2+ ions were 12.987 and 11.11 mg/g, respectively. The adsorption capacities of the CH adsorbent towards Zn2+ and Ni2+ resulted of 12.53 and 10.33 mg/g, respectively. In addition, the kinetic data of Zn2+ and Ni2+ ions uptake revealed that the present system fitted well with pseudo-second-order kinetic model (R2 > 0.99). Thermodynamic studies showed that the retention step was exothermic, and spontaneous in nature. The results indicated that the coffee husk provides an effective and economical approach in highly reducing or almost eradication of both metals Zn2+ and Ni2+ from the aqueous solution.
基金supported by the National Natural Science Foundation of China(51602207,21433007,51320105001,21573170)the Self-determined and Innovative Research Funds of SKLWUT(2017-ZD-4,2016-KF-17)the Natural Science Foundation of Hubei Province of China(2015CFA001)~~
文摘TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.
文摘Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.