The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in t...The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.展开更多
An adaptive synchronization control method is proposed for chaotic permanent magnet synchronous motors based on the property of a passive system. We prove that the controller makes the synchronization error system bet...An adaptive synchronization control method is proposed for chaotic permanent magnet synchronous motors based on the property of a passive system. We prove that the controller makes the synchronization error system between the driving and the response systems not only passive but also asymptotically stable. The simulation results show that the proposed method is effective and robust against uncertainties in the systemic parameters.展开更多
Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were st...Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.展开更多
Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of th...Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.展开更多
This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory. By using two outputs, novel passive controllers are respectively designed to realize the globally asympt...This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory. By using two outputs, novel passive controllers are respectively designed to realize the globally asymptotical stability of the hyperchaotic Chen system and the error dynamical system, which avoids mistakes in Ref.[11], where function W(z) cannot guarantee that fo(z) is globally asymptotically stable via only one output and W(z) is the Lyapunov function of f0(z). Furthermore, numerical simulations are given to show the effectiveness of our method.展开更多
This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output ...This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output variables is developed, which can synchronize hyperchaotic Lu systems asymptotically and globally more easily without knowing the bound of state of the hyperchaotic system. Adaptive laws are introduced to estimate the unknown parameters as well. Simulation results show the effectiveness and flexibility of the proposed control scheme.展开更多
In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based contr...In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.展开更多
In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of den...In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of denial-of-service attacks and deception attacks,and they are described by two groups of independent Bernoulli distributions.On this foundation,via the Lyapunov stability theory and linear matrix inequality technology,the H_(∞)/passive-based performance criteria for semi-Markov jump neural networks are obtained.Additionally,an activation function division approach for neural networks is adopted to further reduce the conservatism of the criteria.Finally,a simulation example is provided to verify the validity and feasibility of the proposed method.展开更多
In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and...In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system.展开更多
为抑制双馈感应发电机(doubly-fed induction generator,DFIG)风电场与串补输电线路间次同步控制相互作用(sub-synchronous control interaction,SSCI),提出基于改进无源控制的SSCI抑制策略。首先,分析了DFIG并网中SSCI发生机理,发现转...为抑制双馈感应发电机(doubly-fed induction generator,DFIG)风电场与串补输电线路间次同步控制相互作用(sub-synchronous control interaction,SSCI),提出基于改进无源控制的SSCI抑制策略。首先,分析了DFIG并网中SSCI发生机理,发现转子侧变流器双环PI控制对SSCI影响较大,可对PI控制进行改进以抑制SSCI。其次,基于DFIG欧拉-拉格朗日(Euler-Lagrange,EL)模型和无源理论,设计转子侧无源控制器,通过计算稳定状态点,注入阻尼抑制SSCI。为提高抑制能力,采用带通滤波器改进无源控制,通过保持输入信号稳定提升控制器性能。最后,给出小干扰分析和时域仿真分析结果,并与PI控制和常规无源控制对比,验证所提策略在串补度变化和风速变化时的抑制效果。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 70571017)
文摘The performance of synchronous reluctance motor (SynRM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in SynRM, a passive control law is presented in this paper, which transforms the chaotic SynRM into an equivalent passive system. It is proved that the equivalent system can be asymptotically stabilized at the set equilibrium point, namely, chaos in SynRM can be controlled. Moreover, in order to eliminate the influence of undeterministic parameters, an adaptive law is introduced into the designed controller. Computer simulation results show that the proposed controller is very effective and robust against the uncertainties in systemic parameters. The present study may help to maintain the secure operation of industrial servo drive system.
基金Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 50937001)the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011)the Construction of Key Laboratories in Universities of Guangxi,China (Grant No. 200912)
文摘An adaptive synchronization control method is proposed for chaotic permanent magnet synchronous motors based on the property of a passive system. We prove that the controller makes the synchronization error system between the driving and the response systems not only passive but also asymptotically stable. The simulation results show that the proposed method is effective and robust against uncertainties in the systemic parameters.
基金Project supported by the National Natural Science Foundation of China (No. 60374013) and the Natural Science Foundation of Zhejiang Province (No. M603217), China
文摘Permanent Magnet Synchronous Motor model can exhibit a variety of chaotic phenomena under some choices of system parameters and external input. Based on the property of passive system, the essential conditions were studied, by which Permanent Magnet Synchronous Motor chaotic system could be equivalent to passive system. Using Lyapunov stability theory, the convergence condition deciding the system's characters was discussed. In the convergence condition area, the equivalent passive system could be globally asymptotically stabilized by smooth state feedback.
基金Project supported by the Natural Science Foundation of Zhejiang Province (No. Y104414) and the Science and Technology Plan of Zhejiang Province (No. 2005C21084), China
文摘Passive system theory was applied to propose a new passive control method with nonlinear observer of the Permanent Magnet Synchronous Motor chaotic system. Through constructing a Lyapunov function, the subsystem of the Permanent Magnet Synchronous Motor chaotic system could be proved to be globally stable at the equilibrium point. Then a controller with smooth state feedback is designed so that the Permanent Magnet Synchronous Motor chaotic system can be equivalent to a passive system. To get the state variables of the controller, the nonlinear observer is also studied. It is found that the outputs of the nonlinear observer can approximate the state variables of the Permanent Magnet Synchronous Motor chaotic system if the system’s nonlinear function is a globally Lipschitz function. Simulation results showed that the equivalent passive system of Permanent Magnet Synchronous Motor chaotic system could be globally asymptotically stabilized by smooth state feedback in the observed parameter convergence condition area.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60574045 and 70771084)
文摘This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory. By using two outputs, novel passive controllers are respectively designed to realize the globally asymptotical stability of the hyperchaotic Chen system and the error dynamical system, which avoids mistakes in Ref.[11], where function W(z) cannot guarantee that fo(z) is globally asymptotically stable via only one output and W(z) is the Lyapunov function of f0(z). Furthermore, numerical simulations are given to show the effectiveness of our method.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant No.E0710018)
文摘This paper investigates the adaptive synchronization of hyperchaotic Lii systems based on the method of extended passive control. By combining the feedback control, the extended passive control method with two output variables is developed, which can synchronize hyperchaotic Lu systems asymptotically and globally more easily without knowing the bound of state of the hyperchaotic system. Adaptive laws are introduced to estimate the unknown parameters as well. Simulation results show the effectiveness and flexibility of the proposed control scheme.
文摘In this paper, a new passivity-based synchronization method for a general class of chaotic systems is proposed. Based on the Lyapunov theory and the linear matrix inequality (LMI) approach, the passivity-based controller is presented to make the synchronization error system not only passive but also asymptotically stable. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation studies for the Genesio-Tesi chaotic system and the Qi chaotic system are presented to demonstrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China under Grant Nos.62103005,62173001,and 62273006the Natural Science Foundation of Anhui Provincial Natural Science Foundation under Grant No.2108085QF276+3 种基金the Natural Science Foundation for Distinguished Young Scholars of Higher Education Institutions of Anhui Province under Grant No.2022AH020034the Natural Science Foundation for Excellent Young Scholars of Higher Education Institutions of Anhui Province under Grant No.2022AH030049,2023AH030030,2022AH030049the Major Technologies Research and Development Special Program of Anhui Province under Grant No.202003a05020001the Key Research and Development Projects of Anhui Province under Grant No.202104a05020015。
文摘In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of denial-of-service attacks and deception attacks,and they are described by two groups of independent Bernoulli distributions.On this foundation,via the Lyapunov stability theory and linear matrix inequality technology,the H_(∞)/passive-based performance criteria for semi-Markov jump neural networks are obtained.Additionally,an activation function division approach for neural networks is adopted to further reduce the conservatism of the criteria.Finally,a simulation example is provided to verify the validity and feasibility of the proposed method.
文摘In Electronic Warfare, and more specifically in the domain of passive localization, accurate time synchronization between platforms is decisive, especially on systems relying on TDOA (time difference of arrival) and FDOA (frequency difference of arrival). This paper investigates this issue by presenting an analysis in terms of final localization performance of an experimental passive localization system based on off-the-shelf components. This system is detailed, as well as the methodology used to carry out the acquisition of real data. This experiment has been realized with two different kinds of clock. The results are analyzed by calculating the Allan deviation and time deviation. The choice of these metrics is explained and their properties are discussed in the scope of an airborne bi-platform passive localization context. Conclusions are drawn regarding the overall localization performance of the system.
文摘为抑制双馈感应发电机(doubly-fed induction generator,DFIG)风电场与串补输电线路间次同步控制相互作用(sub-synchronous control interaction,SSCI),提出基于改进无源控制的SSCI抑制策略。首先,分析了DFIG并网中SSCI发生机理,发现转子侧变流器双环PI控制对SSCI影响较大,可对PI控制进行改进以抑制SSCI。其次,基于DFIG欧拉-拉格朗日(Euler-Lagrange,EL)模型和无源理论,设计转子侧无源控制器,通过计算稳定状态点,注入阻尼抑制SSCI。为提高抑制能力,采用带通滤波器改进无源控制,通过保持输入信号稳定提升控制器性能。最后,给出小干扰分析和时域仿真分析结果,并与PI控制和常规无源控制对比,验证所提策略在串补度变化和风速变化时的抑制效果。