The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization...The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn1-xMgxO(ZnMgO) and Zn1-xSnxO(ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator(SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/ZnXO(X = Mg/Sn) heterojunction devices with different Mg/(Zn+Mg) and Sn/(Zn+Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets(CBO) on the device performance. The simulation results show that the CZTSSe/ZnXO(X = Mg/Sn) devices achieve optimal performance with a small “spike” band or “flat” band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn_(0.9)Mg_(0.1O) and Zn_(0.8)Sn_(0.2)O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn0.9Mg0.1O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.展开更多
This paper provides the fabrication of Cd-free Cu(In,Ga)Se2(CIGS) solar cells on soda-lime glass substrates. A high quality ZnS buffer layer is grown by chemical bath deposition(CBD) process with ZnSO4-NH3-SC(NH2)2 aq...This paper provides the fabrication of Cd-free Cu(In,Ga)Se2(CIGS) solar cells on soda-lime glass substrates. A high quality ZnS buffer layer is grown by chemical bath deposition(CBD) process with ZnSO4-NH3-SC(NH2)2 aqueous solution system. The X-ray diffraction(XRD) result shows that the as-deposited ZnS film has cubic(111) and(220) diffraction peaks. Scanning electron microscope(SEM) images indicate that the ZnS film has a dense and compact surface with good crystalline quality. Transmission measurement shows that the optical transmittance is about 90% when the wavelength is beyond 500 nm. The bandgap(Eg) value of the as-deposited ZnS film is estimated to be 3.54 eV. Finally, a competitive efficiency of 11.06% is demonstrated for the Cd-free CIGS solar cells with ZnS buffer layer after light soaking.展开更多
The photochemical degradation kinetics of Sodium pamino-Phenyl Sulphonate in aqueous solution and CdS colloid systems was studied by means of ESR method, and the kinetics behaviour for both the photoreactions in aqueo...The photochemical degradation kinetics of Sodium pamino-Phenyl Sulphonate in aqueous solution and CdS colloid systems was studied by means of ESR method, and the kinetics behaviour for both the photoreactions in aqueous solution system and in CdS colloid system was compared. The results indicated that both the initial concentrations of SSN and the presence of CdS colloid obviously affected the photodegradation processes of SSN in the way of enhancing the rate constants for the formation of free radical SO3. The kinetics processes of photoreartions were treated by the quasi-stationary analysis method, the results of analysis are consistent with the phenomena observed in our experiments. The experimental results were briefly analyzed and discussed.展开更多
The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfi...The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfide oxide thin film was annealed in sulphure atmosphere for 60 min at 150℃ and 300℃. The impact of the annealing process on the composition, crystal structure, and surface morphology of the thin film was investigated. In addition, superstrate heterojunction solar cells based on the annealed film as a buffer layer and tin sulphide as an active layer were fabricated and characterized. They showed diode-like behavior under dark condition and a relatively small photovoltaic effect under AM1.5 illumination condition.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 62074037 and 52002073)the Fund from the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ124)。
文摘The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn1-xMgxO(ZnMgO) and Zn1-xSnxO(ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator(SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/ZnXO(X = Mg/Sn) heterojunction devices with different Mg/(Zn+Mg) and Sn/(Zn+Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets(CBO) on the device performance. The simulation results show that the CZTSSe/ZnXO(X = Mg/Sn) devices achieve optimal performance with a small “spike” band or “flat” band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn_(0.9)Mg_(0.1O) and Zn_(0.8)Sn_(0.2)O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn0.9Mg0.1O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.
基金supported by the Fundamental Research Funds for the Central Universities(No.65011991)the Specialized Research Fund for the Doctoral Program of Higher Education(No.BE033511)
文摘This paper provides the fabrication of Cd-free Cu(In,Ga)Se2(CIGS) solar cells on soda-lime glass substrates. A high quality ZnS buffer layer is grown by chemical bath deposition(CBD) process with ZnSO4-NH3-SC(NH2)2 aqueous solution system. The X-ray diffraction(XRD) result shows that the as-deposited ZnS film has cubic(111) and(220) diffraction peaks. Scanning electron microscope(SEM) images indicate that the ZnS film has a dense and compact surface with good crystalline quality. Transmission measurement shows that the optical transmittance is about 90% when the wavelength is beyond 500 nm. The bandgap(Eg) value of the as-deposited ZnS film is estimated to be 3.54 eV. Finally, a competitive efficiency of 11.06% is demonstrated for the Cd-free CIGS solar cells with ZnS buffer layer after light soaking.
文摘The photochemical degradation kinetics of Sodium pamino-Phenyl Sulphonate in aqueous solution and CdS colloid systems was studied by means of ESR method, and the kinetics behaviour for both the photoreactions in aqueous solution system and in CdS colloid system was compared. The results indicated that both the initial concentrations of SSN and the presence of CdS colloid obviously affected the photodegradation processes of SSN in the way of enhancing the rate constants for the formation of free radical SO3. The kinetics processes of photoreartions were treated by the quasi-stationary analysis method, the results of analysis are consistent with the phenomena observed in our experiments. The experimental results were briefly analyzed and discussed.
文摘The post-deposition heat treatment (annealing) for the electrochemically deposited thin film is often necessary in order to improve its crystallinity. In the present study, the electrochemically deposited indium sulfide oxide thin film was annealed in sulphure atmosphere for 60 min at 150℃ and 300℃. The impact of the annealing process on the composition, crystal structure, and surface morphology of the thin film was investigated. In addition, superstrate heterojunction solar cells based on the annealed film as a buffer layer and tin sulphide as an active layer were fabricated and characterized. They showed diode-like behavior under dark condition and a relatively small photovoltaic effect under AM1.5 illumination condition.