S-scheme heterojunctions have promising applications in photocatalytic CO_(2) reduction due to their unique structure and interfacial interactions,but improving their carrier separation efficiency and CO_(2) adsorptio...S-scheme heterojunctions have promising applications in photocatalytic CO_(2) reduction due to their unique structure and interfacial interactions,but improving their carrier separation efficiency and CO_(2) adsorption capacity remains a challenge.In this work,highly dispersed MOF-BiOBr/Mn_(0.2) Cd_(0.8) S(MOF-BiOBr/MCS)S-scheme heterojunctions with high photocatalytic CO_(2) reduction performance were constructed.The intimate contact between the MCS nano-spheres and the nanosheet-assembled MOF-BiOBr rods,driven by the internal electric field,accelerates the charge transfer along the S-scheme pathway.Moreover,the high specific surface area of MOFs is preserved to provide abundant active sites for reaction/adsorption.The formation of MOF-BiOBr/MCS S-scheme heterojunction is confirmed by theoretical calculations.The optimum MOF-BiOBr/MCS shows excellent activity in CO_(2) reduction,affording a high CO evolution rate of 60.59µmol h^(−1) g^(−1).The present work can inspire the exploration for the construction of effective heterostructure photocatalysts for photoreduction CO_(2).展开更多
基金supported by the National Natural Science Foundation of China(Nos.22278169 and 51973078)the Excellent scientific research and innovation team of Education Department of Anhui Province(No.2022AH010028)+1 种基金the Major projects of Education Department of Anhui Province(No.2022AH040068)the Key Foundation of Educational Commission of Anhui Province(No.2022AH050396).
文摘S-scheme heterojunctions have promising applications in photocatalytic CO_(2) reduction due to their unique structure and interfacial interactions,but improving their carrier separation efficiency and CO_(2) adsorption capacity remains a challenge.In this work,highly dispersed MOF-BiOBr/Mn_(0.2) Cd_(0.8) S(MOF-BiOBr/MCS)S-scheme heterojunctions with high photocatalytic CO_(2) reduction performance were constructed.The intimate contact between the MCS nano-spheres and the nanosheet-assembled MOF-BiOBr rods,driven by the internal electric field,accelerates the charge transfer along the S-scheme pathway.Moreover,the high specific surface area of MOFs is preserved to provide abundant active sites for reaction/adsorption.The formation of MOF-BiOBr/MCS S-scheme heterojunction is confirmed by theoretical calculations.The optimum MOF-BiOBr/MCS shows excellent activity in CO_(2) reduction,affording a high CO evolution rate of 60.59µmol h^(−1) g^(−1).The present work can inspire the exploration for the construction of effective heterostructure photocatalysts for photoreduction CO_(2).