In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attract...In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.展开更多
The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is high...The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.展开更多
Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the p...Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn_(0.8)Cd_(0.2)O thin films. When the thin films were pre-heated at 150 ℃, polycrystalline Zn O thin films were obtained. When the thin films were pre-heated at temperatures of 200 ℃ or higher, preferential growth of Zn O nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 e V to 3.08 e V when the pre-heating temperature increased from 150 ℃ to 300 ℃.展开更多
S-scheme heterojunctions have promising applications in photocatalytic CO_(2) reduction due to their unique structure and interfacial interactions,but improving their carrier separation efficiency and CO_(2) adsorptio...S-scheme heterojunctions have promising applications in photocatalytic CO_(2) reduction due to their unique structure and interfacial interactions,but improving their carrier separation efficiency and CO_(2) adsorption capacity remains a challenge.In this work,highly dispersed MOF-BiOBr/Mn_(0.2) Cd_(0.8) S(MOF-BiOBr/MCS)S-scheme heterojunctions with high photocatalytic CO_(2) reduction performance were constructed.The intimate contact between the MCS nano-spheres and the nanosheet-assembled MOF-BiOBr rods,driven by the internal electric field,accelerates the charge transfer along the S-scheme pathway.Moreover,the high specific surface area of MOFs is preserved to provide abundant active sites for reaction/adsorption.The formation of MOF-BiOBr/MCS S-scheme heterojunction is confirmed by theoretical calculations.The optimum MOF-BiOBr/MCS shows excellent activity in CO_(2) reduction,affording a high CO evolution rate of 60.59µmol h^(−1) g^(−1).The present work can inspire the exploration for the construction of effective heterostructure photocatalysts for photoreduction CO_(2).展开更多
基金supported by the National Natural Science Foundation of China(51572103,51502106)the Distinguished Young Scholar of Anhui Province(1808085J14)+2 种基金the Foundation for Young Talents in College of Anhui Province(gxyqZD2017051)the Key Foundation of Educational Commission of Anhui Province(KJ2016SD53)Innovation Team of Design and Application of Advanced Energetic Materials(KJ2015TD003)~~
文摘In recent years,environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels.Among the many technologies,decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic.However,highly efficient decomposition of water that is driven by visible light is still a challenge.Herein,we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine(Pg-C3N4/Zn0.2Cd0.8S-DETA)composite by a facile solvothermal method.It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition.The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g^-1 h^-1,which was 16.73,1.61,and 1.44 times greater than those of Pg-C3N4,CdS-DETA,and Zn0.2Cd0.8S-DETA,respectively.In addition,15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability,which was maintained for seven cycles of photocatalytic water splitting test.We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future.
文摘The solar-driven catalytic conversion of CO2 to useful chemical fuels is regarded as an environmentally friendly approach to reduce the consumption of fossil fuels and mitigate the greenhouse effect.However,it is highly intriguing and challenging to promote the selectivity and efficiency of visible-light-responsive photocatalysts that favor the adsorption of CO2 in photoreduction processes.In this work,three-dimensional hierarchical Cd0.8Zn0.2S flowers(C8Z2S-F)with ultrathin petals were successfully synthesized through an in-situ self-assembly growth process using sodium citrate as a morphology director.The flower-like Cd0.8Zn0.2S solid solution exhibited remarkable photocatalytic performance in the reduction of CO2,generating CO up to 41.4μmol g^−1 under visible-light illumination for 3 h;this was nearly three times greater than that of Cd0.8Zn0.2S nanoparticles(C8Z2S-NP)(14.7μmol g^−1).Particularly,a comparably high selectivity of 89.9%for the conversion of CO2 to CO,with a turnover number of 39.6,was obtained from the solar-driven C8Z2S-F system in the absence of any co-catalyst or sacrificial agent.Terahertz time-domain spectroscopy indicated that the introduction of flower structures enhanced the light-harvesting capacity of C8Z2S-F.The in situ diffuse reflectance infrared Fourier transform spectroscopy unveiled the existence of surface-adsorbed species and the conversion of photoreduction intermediates during the photocatalytic process.Empirical characterizations and predictions of the photocatalytic mechanism demonstrated that the flower-like Cd0.8Zn0.2S solid solution possessed desirable CO2 adsorption properties and an enhanced charge-transfer capability,thus providing a highly effective photocatalytic reduction of CO2.
基金Funded by the National Natural Science Foundation of China(No.51461135004)the Doctoral Fund of Ministry of Education Priority Development Project(No.20130143130002)+1 种基金the Key Technology Innovation Project of Hubei Province(2013AAA005)the Scientific Leadership training Program of Hubei Province
文摘Zn_(0.8)Cd_(0.2)O thin films prepared using the spin-coating method were investigated. X-ray diffraction, scanning electron microscopy, and UV-Vis spectrophotometry were employed to illustrate the effects of the pre-heating temperature on the crystalline structure, surface morphology and transmission spectra of Zn_(0.8)Cd_(0.2)O thin films. When the thin films were pre-heated at 150 ℃, polycrystalline Zn O thin films were obtained. When the thin films were pre-heated at temperatures of 200 ℃ or higher, preferential growth of Zn O nanocrystals along the c-axis was observed. Transmission spectra showed that thin films with high transmission in the visible light range were prepared and effective bandgap energies of these thin films decreased from 3.19 e V to 3.08 e V when the pre-heating temperature increased from 150 ℃ to 300 ℃.
基金supported by the National Natural Science Foundation of China(Nos.22278169 and 51973078)the Excellent scientific research and innovation team of Education Department of Anhui Province(No.2022AH010028)+1 种基金the Major projects of Education Department of Anhui Province(No.2022AH040068)the Key Foundation of Educational Commission of Anhui Province(No.2022AH050396).
文摘S-scheme heterojunctions have promising applications in photocatalytic CO_(2) reduction due to their unique structure and interfacial interactions,but improving their carrier separation efficiency and CO_(2) adsorption capacity remains a challenge.In this work,highly dispersed MOF-BiOBr/Mn_(0.2) Cd_(0.8) S(MOF-BiOBr/MCS)S-scheme heterojunctions with high photocatalytic CO_(2) reduction performance were constructed.The intimate contact between the MCS nano-spheres and the nanosheet-assembled MOF-BiOBr rods,driven by the internal electric field,accelerates the charge transfer along the S-scheme pathway.Moreover,the high specific surface area of MOFs is preserved to provide abundant active sites for reaction/adsorption.The formation of MOF-BiOBr/MCS S-scheme heterojunction is confirmed by theoretical calculations.The optimum MOF-BiOBr/MCS shows excellent activity in CO_(2) reduction,affording a high CO evolution rate of 60.59µmol h^(−1) g^(−1).The present work can inspire the exploration for the construction of effective heterostructure photocatalysts for photoreduction CO_(2).