A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated...A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.展开更多
Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate t...Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.展开更多
为了研究高原动物对青藏高原高寒、低氧等极端生境的适应机理,进一步探讨高原动物对高原反应——高原脑水肿抗性的分子机理,运用基因克隆与生物信息学相关技术和方法,对牦牛脑AQP4(水通道蛋白4,AQP4)基因CDS全长序列进行克隆、基因序列...为了研究高原动物对青藏高原高寒、低氧等极端生境的适应机理,进一步探讨高原动物对高原反应——高原脑水肿抗性的分子机理,运用基因克隆与生物信息学相关技术和方法,对牦牛脑AQP4(水通道蛋白4,AQP4)基因CDS全长序列进行克隆、基因序列比对及其生物信息学特征分析。结果表明,牦牛AQP4的CDS含有一个966 bp的开放阅读框,编码322个氨基酸;牦牛AQP4基因编码蛋白分子量34.69 k D,理论等电点(p I)7.59,其编码蛋白含有6次跨膜结构,属于疏水性蛋白;二级结构主要由α-螺旋、延伸及无规则卷曲构成;AQP4基因编码产物氨基酸同源性及系统进化分析发现,牦牛AQP4基因编码氨基酸序列与黄牛、绵羊等物种间同源性较高,系统进化情况与其亲缘关系远近一致。展开更多
文摘A simple two-step hydrothermal method synthesized four different CdS/Fe_(3)O_(4)photocatalysts with varying ratios of mass of CdS to Fe_(3)O_(4).The composition and morphology of the prepared samples were investigated using X-ray diffraction(XRD),Raman spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).Solid UV reflectance spectra testing found that CdS/Fe_(3)O_(4)nanocomposites had good light absorption throughout the spectral range,promoting their photocatalytic properties.Under visible light irradiation,CdS/Fe_(3)O_(4)(2∶5)with a mass ratio of 2∶5 exhibited excellent photocatalytic perfor-mance,with a degradation rate of 98.8%for rhodamine B.Furthermore,after five cycles of photocatalytic degrada-tion reaction,the rhodamine B degradation rate remained at 96.2%,indicating that the photocatalysts have good pho-tocatalytic stability.
基金financially supported by the National Natural Science Foundation of China(Grant No.21902046,21801071,12174092,U21A20500)Overseas Expertise Introduction Center for Discipline Innovation(D18025)+3 种基金the Natural Science Foundation of Hubei Provincial(Grant No.2018CFB171)Wuhan Science and Technology Bureau(2020010601012163)Science and Technology Research Project of Hubei Provincial Department of Education(No.D20221001)the open foundation of the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
文摘Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.
文摘为了研究高原动物对青藏高原高寒、低氧等极端生境的适应机理,进一步探讨高原动物对高原反应——高原脑水肿抗性的分子机理,运用基因克隆与生物信息学相关技术和方法,对牦牛脑AQP4(水通道蛋白4,AQP4)基因CDS全长序列进行克隆、基因序列比对及其生物信息学特征分析。结果表明,牦牛AQP4的CDS含有一个966 bp的开放阅读框,编码322个氨基酸;牦牛AQP4基因编码蛋白分子量34.69 k D,理论等电点(p I)7.59,其编码蛋白含有6次跨膜结构,属于疏水性蛋白;二级结构主要由α-螺旋、延伸及无规则卷曲构成;AQP4基因编码产物氨基酸同源性及系统进化分析发现,牦牛AQP4基因编码氨基酸序列与黄牛、绵羊等物种间同源性较高,系统进化情况与其亲缘关系远近一致。