Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recom...Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.展开更多
The In-doped CdTe/Si (p) heterostruture was fabricated and its electrical and photoelectrical properties were studied and interpreted. During the fabrication processes of CdTe/Si heterojunction, some practical trouble...The In-doped CdTe/Si (p) heterostruture was fabricated and its electrical and photoelectrical properties were studied and interpreted. During the fabrication processes of CdTe/Si heterojunction, some practical troubles were encountered. However, the important one was the formation of the SiO2 thin oxide layer on the soft surface of the Si during the formation of the back contact. The silicon wafer was subjected to different chemical treatments in order to remove the thin oxide layer from the silicon wafer surfaces. It was found that the heterojunction with Si (p+) substrate gave relatively high open circuit voltage comparing with that of Si (p) substrate. Also an electroforming phenomenon had been observed in this structure for the first time which may be considered as a memory effect. It was observed that there are two states of conduction, non-conducting state and conducting state. The normal case is the non-conducting state. As the forward applied voltage increased beyond threshold value, it switches into the conducting state and remains in this state even after the voltage drops to zero.展开更多
Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep...Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.展开更多
One of the most promising solar cell devices is cadmium telluride (CdTe) based. These cells however, have their own problems of stability and degradation in efficiency. Measurements show that CdS/CdTe solar cell has h...One of the most promising solar cell devices is cadmium telluride (CdTe) based. These cells however, have their own problems of stability and degradation in efficiency. Measurements show that CdS/CdTe solar cell has high series resistance which degrades the performance of solar cell energy conversion. Both active layers (CdS and CdTe) had been fabricated by thermal evaporation and tested individually. It was found that CdS window layer of 300 nm have the lowest series resistance with maximum light absorption. While 5 - 7 μm CdTe absorber layer absorbed more than 90% of the incident light with minimum series resistance. A complete CdS/CdTe solar cell was fabricated and tested. It was found that deposited cell without heat treatment shows that the short circuit current increment decreases as the light intensity increases. This type of deposited cell has low conversion efficiency. The energy conversion efficiency was improved by heat treatment, depositing heavily doped layer at the back of the cell and minimizing the contact resistivity by depositing material with resistivity less than 1 m??cm2. All these modifications were not enough because the back contact is non-ohmic. Tunnel diode of CdTe (p++)/CdS (n++) was deposited in the back of the cell. The energy conversion efficiency was improved by more than 7%.展开更多
Kesterite Cu2ZnSn(S,Se)4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still...Kesterite Cu2ZnSn(S,Se)4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conversion efficiency.Undesirable band alignment and severe non-radiative recombination at CZTSSe/CdS heterojunction interfaces are the major causes limiting the current/voltage output and overall device performance.Herein,we propose a novel two-step CdS deposition strategy to improve the quality of CZTSSe/CdS heterojunction interface and thereby improve the performance of CZTSSe solar cell.The two-step strategy includes firstly pre-deposits CdS thin layer on CZTSSe absorber layer by chemical bath deposition(CBD),followed with a mild heat treatment to facilitate element inter-diffusion,and secondly deposits an appropriate thickness of CdS layer by CBD to cover the whole surface of pre-deposited CdS and CZTSSe layers.The solar energy conversion efficiency of CZTSSe solar cells with two-step deposited CdS layer approaches to 8.76%(with an active area of about 0.19 cm2),which shows an encouraging improvement of over 87.98%or 30.16%compared to the devices with traditional CBD-deposited CdS layer without and with the mild annealing process,respectively.The performance enhancement by the two-step CdS deposition is attributed to the formation of more favorable band alignment at CZTSSe/CdS interface as well as the effective decrease in interfacial recombination paths on the basis of material and device characterizations.The two-step CdS deposition strategy is simple but effective,and should have large room to improve the quality of CZTSSe/CdS heterojunction interface and further lift up the conversion efficiency of CZTSSe solar cells.展开更多
Due to limited availability and the rising price of telluride, the biggest challenge in solar Photo-voltaic (PV) is to successfully design and fabricate optimized CdTe solar cells with reducing the cell thickness that...Due to limited availability and the rising price of telluride, the biggest challenge in solar Photo-voltaic (PV) is to successfully design and fabricate optimized CdTe solar cells with reducing the cell thickness that show simultaneously high efficiency and current density. A novel structure of ultrathin CdTe solar cells is proposed in this paper that focuses on conversion efficiency. This structure achieved by rotating 90o in the base line structure that suggests high efficiency due to the high current density. The result showed a considerable improvement over the 15% efficiency of the reference solar cell. The proposed structure is quite noteworthy in reducing the amount of material used and associated losses. Under global air mass (AM) 1.5 conditions, an open-circuit voltage (V<sub>oc</sub>) of 866 mV, a short-circuit current density (J<sub>sc</sub>) of 74.84 mA/cm<sup>2</sup>, and a fill factor (FF) of 48.2% were obtained corresponding to a conversion efficiency of 31.2%.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074037,61574038,51961165108,and 51972332)the Natural Science Foundation of Fujian Province,China(Grant No.2017J01503)+2 种基金the Education and Scientific Research Project of Fujian Province,China(Grant No.JAT190010)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,China(Grant No.SKLPEE-202011)Fuzhou University,China。
文摘Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
文摘The In-doped CdTe/Si (p) heterostruture was fabricated and its electrical and photoelectrical properties were studied and interpreted. During the fabrication processes of CdTe/Si heterojunction, some practical troubles were encountered. However, the important one was the formation of the SiO2 thin oxide layer on the soft surface of the Si during the formation of the back contact. The silicon wafer was subjected to different chemical treatments in order to remove the thin oxide layer from the silicon wafer surfaces. It was found that the heterojunction with Si (p+) substrate gave relatively high open circuit voltage comparing with that of Si (p) substrate. Also an electroforming phenomenon had been observed in this structure for the first time which may be considered as a memory effect. It was observed that there are two states of conduction, non-conducting state and conducting state. The normal case is the non-conducting state. As the forward applied voltage increased beyond threshold value, it switches into the conducting state and remains in this state even after the voltage drops to zero.
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.
文摘One of the most promising solar cell devices is cadmium telluride (CdTe) based. These cells however, have their own problems of stability and degradation in efficiency. Measurements show that CdS/CdTe solar cell has high series resistance which degrades the performance of solar cell energy conversion. Both active layers (CdS and CdTe) had been fabricated by thermal evaporation and tested individually. It was found that CdS window layer of 300 nm have the lowest series resistance with maximum light absorption. While 5 - 7 μm CdTe absorber layer absorbed more than 90% of the incident light with minimum series resistance. A complete CdS/CdTe solar cell was fabricated and tested. It was found that deposited cell without heat treatment shows that the short circuit current increment decreases as the light intensity increases. This type of deposited cell has low conversion efficiency. The energy conversion efficiency was improved by heat treatment, depositing heavily doped layer at the back of the cell and minimizing the contact resistivity by depositing material with resistivity less than 1 m??cm2. All these modifications were not enough because the back contact is non-ohmic. Tunnel diode of CdTe (p++)/CdS (n++) was deposited in the back of the cell. The energy conversion efficiency was improved by more than 7%.
基金supported by the National Natural Science Foundation of China(91833303,51872044,51372036,51202025 and 51602047)the Key Project of Chinese Ministry of Education(113020A)+3 种基金the 111 project(B13013)the Jilin Province Science and Technology Development Project(20180101175JC and 20140520096JH)the Fundamental Research Funds for the Central Universities(2412019FZ043)the Open Project of Key Laboratory for UV Emitting Materials and Technology of Ministry of Education(130028857).
文摘Kesterite Cu2ZnSn(S,Se)4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conversion efficiency.Undesirable band alignment and severe non-radiative recombination at CZTSSe/CdS heterojunction interfaces are the major causes limiting the current/voltage output and overall device performance.Herein,we propose a novel two-step CdS deposition strategy to improve the quality of CZTSSe/CdS heterojunction interface and thereby improve the performance of CZTSSe solar cell.The two-step strategy includes firstly pre-deposits CdS thin layer on CZTSSe absorber layer by chemical bath deposition(CBD),followed with a mild heat treatment to facilitate element inter-diffusion,and secondly deposits an appropriate thickness of CdS layer by CBD to cover the whole surface of pre-deposited CdS and CZTSSe layers.The solar energy conversion efficiency of CZTSSe solar cells with two-step deposited CdS layer approaches to 8.76%(with an active area of about 0.19 cm2),which shows an encouraging improvement of over 87.98%or 30.16%compared to the devices with traditional CBD-deposited CdS layer without and with the mild annealing process,respectively.The performance enhancement by the two-step CdS deposition is attributed to the formation of more favorable band alignment at CZTSSe/CdS interface as well as the effective decrease in interfacial recombination paths on the basis of material and device characterizations.The two-step CdS deposition strategy is simple but effective,and should have large room to improve the quality of CZTSSe/CdS heterojunction interface and further lift up the conversion efficiency of CZTSSe solar cells.
文摘Due to limited availability and the rising price of telluride, the biggest challenge in solar Photo-voltaic (PV) is to successfully design and fabricate optimized CdTe solar cells with reducing the cell thickness that show simultaneously high efficiency and current density. A novel structure of ultrathin CdTe solar cells is proposed in this paper that focuses on conversion efficiency. This structure achieved by rotating 90o in the base line structure that suggests high efficiency due to the high current density. The result showed a considerable improvement over the 15% efficiency of the reference solar cell. The proposed structure is quite noteworthy in reducing the amount of material used and associated losses. Under global air mass (AM) 1.5 conditions, an open-circuit voltage (V<sub>oc</sub>) of 866 mV, a short-circuit current density (J<sub>sc</sub>) of 74.84 mA/cm<sup>2</sup>, and a fill factor (FF) of 48.2% were obtained corresponding to a conversion efficiency of 31.2%.