A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable ...A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current,deposition time and electrolyte concentration. It was revealed,from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile,that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs,under a visible light irradiation,CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity,which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).展开更多
A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physic...A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.展开更多
In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposi...In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposition method (S-CBD). The as-prepared CdS/TiO2NTs was characterized by field-emission scanning electron mi- croscopy (FE-SEM) and X-ray diffraction (XRD). The results indicated that the CdS nanoparticles were effectively deposited on the surface of TiOeNTs. The amperometric I-t curve on the CdS/TiO2NTs electrode was also presented. It was found that the photocurrent density was enhanced significantly from 0.5 to 1.85 mA/cm2 upon illumination with applied potential of 0.5 V at the central wavelength of 253.7 nm. The photoelectrocatalytic (PEC) activity of the CdS/TiO2NTs electrode was investigated by degradation of methyl orange (MO) in aqueous solution. Compared with TiO2NTs electrode, the degradation efficiencies of CdS/TiO2NTs electrode increased from 78% to 99.2% under UV light in 2 h, and from 14% to 99.2% under visible light in 3 h, which was caused by effective separation of the electrons and holes due to the effect of CdS, hence inhibiting the recombination of electron/hole pairs of TiO2NTs.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50571085)the Natural Science Foundation of Fujian Province (Grant No. U0750015)R&D Program of Fujian (Grant No. 2007H0031) and that of Xiamen (Grant No. 3502Z20073004)
文摘A constant current electrochemical deposition was employed to incorporate CdS nanoparticles into the TiO2 nanotube arrays (TiO2NTs). The size and amount of CdS nanoparticles in TiO2NTs (CdS@TiO2NTs) were controllable via modulating current,deposition time and electrolyte concentration. It was revealed,from the scanning electron microscopy (SEM) images and X-ray photoelectron spectroscopy (XPS) in depth profile,that CdS nanoparticles were filled into TiO2 nanotubes. A shift of the absorption edge toward the visible region under the optimal electrodeposition condition was observed with the diffuse reflectance spectroscopy (DRS). A 5-fold enhancement in the photocurrent spectrum for TiO2NTs was observed and the photocurrent response range was significantly extended into the visible region because of the CdS incorporation. Compared with pure TiO2NTs,under a visible light irradiation,CdS@TiO2NTs exhibited a 3.5-fold improvement of photocatalytic activity,which was demonstrated by the photocatalytic decomposition of Rhodamine B (RhB).
基金Financial supports from the Project Supported by the Natural Science Foundation of the Jiangsu Province Higher Education Institutions of China(09KJD150002)Project Supported by the Graduate Innovation Program Foundation of the Jiangsu Province Higher Education Institutions of China(CXLX_0570)
文摘A series of carbon nanotubes/TiO2 nanotubes (CNTs/TNTs) composite photocatalysts were successfully prepared by incorporation of CNTs in HNO3 washing process. These photocatalysts were characterized by XRD, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy, TEM and Raman spectroscopy, respectively, and their photocatalytic activities were tested by using methyl orange (MO) as a model compound. Also, the effects of amount of CNTs incorporated, calcination temperature and amount of catalyst on the photocatalytic activity of the composite photocatalyst were systematically investigated. The results show that the CNTs/TNTs composite exhibits much higher photocatalytic activity than that of the TNTs or CNTs alone.
文摘In this work, CdS sensitized TiO2 nanotube arrays (CdS/TiO2NTs) electrode was synthesized with the CdS deposition on the highly ordered titanium dioxide nanotube arrays (TiO2NTs) by sequential chemical bath deposition method (S-CBD). The as-prepared CdS/TiO2NTs was characterized by field-emission scanning electron mi- croscopy (FE-SEM) and X-ray diffraction (XRD). The results indicated that the CdS nanoparticles were effectively deposited on the surface of TiOeNTs. The amperometric I-t curve on the CdS/TiO2NTs electrode was also presented. It was found that the photocurrent density was enhanced significantly from 0.5 to 1.85 mA/cm2 upon illumination with applied potential of 0.5 V at the central wavelength of 253.7 nm. The photoelectrocatalytic (PEC) activity of the CdS/TiO2NTs electrode was investigated by degradation of methyl orange (MO) in aqueous solution. Compared with TiO2NTs electrode, the degradation efficiencies of CdS/TiO2NTs electrode increased from 78% to 99.2% under UV light in 2 h, and from 14% to 99.2% under visible light in 3 h, which was caused by effective separation of the electrons and holes due to the effect of CdS, hence inhibiting the recombination of electron/hole pairs of TiO2NTs.