The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe...The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.展开更多
A novel chemiluminescence(CL) performance of CdTe/CdS/ZnS quantum dots(QDs) with periodate(KIO_4) was studied.Effects of concentration and pH on the CL system were investigated.Electron spin resonance(ESR) and...A novel chemiluminescence(CL) performance of CdTe/CdS/ZnS quantum dots(QDs) with periodate(KIO_4) was studied.Effects of concentration and pH on the CL system were investigated.Electron spin resonance(ESR) and the effects of radical scavenger analysis were employed for identification of intermediate species.The CL spectra for this system showed only one maximum emission peak centered around 620 nm,which was similar with photoluminescence(PL) spectra of CdTe/CdS/ZnS QDs.The CL of CdTe/CdS/ZnS QDs was induced by direct chemical oxidation and the possible mechanism could be explained by radiative recombination of injected holes and electrons.This investigation not only provided new sight into the optical characteristics of CdTe/CdS/ZnS QDs,but also broadened their potential optical utilizations.展开更多
Poly(organophosphazenes) have potential applications in making water-soluble and biocompatible quantum dots (QDs) due to their wide variety of properties. The CdSe QDs of green emission and the core-shell CdSe/ZnS QDs...Poly(organophosphazenes) have potential applications in making water-soluble and biocompatible quantum dots (QDs) due to their wide variety of properties. The CdSe QDs of green emission and the core-shell CdSe/ZnS QDs of red emission were prepared. Subsequently the trioctylphosphine oxide-stabilized CdSe/ZnS QDs were transferred from chloroform into water through a ligand exchange process with poly(glycino amino acid)phosphazenes, which can be obtained from the saponification of poly (glycino amino ester)phosphazenes at room temperature. The resulting QDs-polymer nanocomposite particles can form colloidally stable suspensions in water and exhibit good photostability.展开更多
Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron mic...Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.展开更多
The optical properties of CdSe/ZnS quantum dots(QDs)embedded in polydimethylsiloxane(PDMS)flexible materials after irradiated withγ-rays were studied.As an embedding matrix,PDMS exhibits the advantage of high radiati...The optical properties of CdSe/ZnS quantum dots(QDs)embedded in polydimethylsiloxane(PDMS)flexible materials after irradiated withγ-rays were studied.As an embedding matrix,PDMS exhibits the advantage of high radiation hardness.The luminescence spectra and fluorescence lifetime of the irradiated and unirradiated samples were tested.The fluorescence intensity of QDs decreases with the increase of the irradiation dose according to the result of luminescence spectra.The fluorescence intensity of the QDs decreases by 80%after irradiation with a dose of 1 kGy,but the position of the emission peak and the spectral shape of the QDs remain consistent before and after irradiation.In addition,the fluorescence lifetime of QDs is shortened after irradiation.Based on the fluorescence response of QDs to the irradiation ofγ-rays and combined with flexible materials,our work provides a theoretical basis for the application of QDs as a new wearable dosimeter.展开更多
The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod(NR)array films as the template.Benefiting from...The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod(NR)array films as the template.Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs,the uniquely etched and W-doped ZnO(EWZ)nanotube(NT)array films with larger surface area,more active sites and better energy band structure were used to improve the photoelectrochemical(PEC)performance and the loading quality of CdS quantum dots(QDs).On the basis of their better surface characteristics,the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection;this effectively improved the light-harvesting ability,charge transportation and separation as well as charge injection efficiency during the PEC reaction.Therefore,all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance.The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA·cm^(-2),2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs.The corresponding etching and optimizing mechanisms were also discussed.展开更多
Water-soluble CdS quantum dots(CdS-QDs) capped with thioglycohc acid were easily prepared, and a detection method of adriamycin was presented based on the fluorescence quenching of CdS-QDs. It was found that a compl...Water-soluble CdS quantum dots(CdS-QDs) capped with thioglycohc acid were easily prepared, and a detection method of adriamycin was presented based on the fluorescence quenching of CdS-QDs. It was found that a complex could be formed between cetyhrimethyl ammonium bromide(CTAB) and CdS-QDs by using electrostatic interaction in Britton-Robinson(BR) buffer at pH = 7.00, and the strong fluorescence emission of the complex was observed at 500 nm when the complex was excited at 378 run. The presence of adriamycin, however, could strongly quench the fluorescence through hydrophobic interaction. The overall quenching percentage as a function of adriamycin concentration matches the Stern-Volmer equation very well. These properties make CdS-QDs a potential fluorescence probe for the detection of adriamycin. The detection hmit(3σ) of adriamycin is approximately 10^-9 mol/L.展开更多
A rapid, ultrasensitive and convenient fluorescence measurement technology based on the enhancement of the fluorescence intensity resulting from the interaction of functionalized CdSe/CdS quantum dots (QDs) with bov...A rapid, ultrasensitive and convenient fluorescence measurement technology based on the enhancement of the fluorescence intensity resulting from the interaction of functionalized CdSe/CdS quantum dots (QDs) with bov/ne serum albumin (BSA) was proposed. The citrate-stabilized CdSe/CdS (QDs) were synthesized by using Se powder and Na2S as precursors instead of any pyrophoric organometallic precursors. The modified CdSe/CdS QDs are brighter and more stable against photobleaching in comparison with organic fluorophores. At pH 7.0, the fluorescence signal of CdSe/CdS is enhanced by increasing the concentration of BSA in the range of 0.1-10 μg/mL, and the low detection limit is 0.06 μg/mL. A linear relationship between the enhanced fluorescence peak intensity (△F) and BSA concentration (c) is established using equation △F=50.7c+16.4 (R=0.996 36). Results of determination for BSA in three synthetic samples are identical with the true values, and the recovery (98.9%-102.4%) and relative standard deviation (RSD, 1.8%-2.5%) are satisfactory.展开更多
The interaction between CdS quantum dots and amino polysaccharide chitosan in aqueous solution was studied via photoluminescence (PL) spectra. The surface binding of chitosan with different molecular weight (MW) quenc...The interaction between CdS quantum dots and amino polysaccharide chitosan in aqueous solution was studied via photoluminescence (PL) spectra. The surface binding of chitosan with different molecular weight (MW) quenched the luminescence of QDs due to the elimination of radioactive anion vacancy centers. This process fits well with the Perrin model; lower MW chitosan exhibits higher quenching efficiency due to better availability to the surface.展开更多
The influence of surface S^2- dangling bonds and surface doped ions(Se^2-, Cu^2+, and Hg^2+) on the photoluminescence of Cd^2+-rich CdS QDs was investigated. A quantitative model was proposed to understand the co...The influence of surface S^2- dangling bonds and surface doped ions(Se^2-, Cu^2+, and Hg^2+) on the photoluminescence of Cd^2+-rich CdS QDs was investigated. A quantitative model was proposed to understand the complex transfer processes of excited electrons in CdS QDs. The transfer of excited electrons from either the conduction band or the Cd^2+-related trap-state to the surface S^2-related shallow hole trap-state is effective. However, the trap of excited electrons by surface doped ion trap-states from the Cd^2+-related trap-state is more effective than that from the conduction band. The efficiency of trapping electrons from both the conduction band and the Cd^2+-related trap-state can be quantitatively understood with the help of the proposed model. The results show that the transfer efficiency of excited electrons is dependent on the location of the energy-level of the relevant surface-related trap-state. The trap of excited electrons by the surface trap-state with energy-level closer to that of the conduction band is more effective, especially for the trap of excited electrons from Cd^2+-related trap-state.展开更多
In the study, we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), fluorescenc...In the study, we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), fluorescence spectrometry and fluorescence correlation spectroscopy (FCS) were used to characterize the QDs conjugates with antibody. We found that the QDs-antibody conjugates possessed high fluorescence, small hydrodynamic radii and good stability in aqueous solution. 2009 Ji Cun Ren. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
In the present work,a solution-based co-precipitation method has been adopted to synthesize pure and cobalt-doped ZnS quantum dots and characterized by XRD,SEM,TEM with EDX,FTIR and gas sensing properties.XRD analysis...In the present work,a solution-based co-precipitation method has been adopted to synthesize pure and cobalt-doped ZnS quantum dots and characterized by XRD,SEM,TEM with EDX,FTIR and gas sensing properties.XRD analysis has shown a single phase of ZnS quantum dots having a zinc blend structure.TEM and XRD line broadening indicated that the average crystallite size in the sample is in the range of 2 to 5 nm.SEM micrographs show spherical-shaped quantum dots.FTIR studies show that cobalt has been successfully doped into the ZnS cubic lattice.EDX spectra have analyzed the elemental presence in the samples and it is evident that the spectra confirmed the presence of cobalt(Co),zinc(Zn),oxygen(O),and sulphur(S)elements only and no other impurities are observed.The ZnS-based quantum dot sensors reveal high sensitivity towards 50 ppm of ammonia vapors at an operating temperature of 70℃.Hence,ZnS-based quantum dots can be a promising and quick traceable sensor towards ammonia sensing applications with good response and recovery time.展开更多
We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the rati...We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.展开更多
The temperature dependence of the photoluminescence(PL) from Mn S/Zn S core–shell quantum dots is investigated in a temperature range of 8 K–300 K. The orange emission from the ^4T1→^6A1transition of Mn^2+ions a...The temperature dependence of the photoluminescence(PL) from Mn S/Zn S core–shell quantum dots is investigated in a temperature range of 8 K–300 K. The orange emission from the ^4T1→^6A1transition of Mn^2+ions and the blue emission related to the trapped surface state are observed in the Mn S/Zn S core–shell quantum dots. As the temperature increases, the orange emission is shifted toward a shorter wavelength while the blue emission is shifted towards the longer wavelength. Both the orange and blue emissions reduce their intensities with the increase of temperature but the blue emission is quenched faster. The temperature-dependent luminescence intensities of the two emissions are well explained by the thermal quenching theory.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.11074003) and the Key Program of Educational Commission of Anhui Province of China (No.KJ2010AI32). For the help of Prof. J. L. Zhao at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in sample preparation is greatly appreciated.
文摘The intra- and inter-band relaxation dynamics of CdSe/CdS/ZnS core/shell/shell quantum dots are investigated with the aid of time-resolved nonlinear transmission spectra which are obtained using femtosecond pump-probe technique. By selectively exciting the core and shell carrier, the dynamics are studied in detail. Carrier relaxation is found faster in the conduction band of the CdS shell (about 130 fs) than that in the conduction band of the CdSe core (about 400 fs). From the experiments it is distinctly demonstrated the existence of the defect states in the interface between the CdSe core and the CdS shell, indicating that ultrafast spectroscopy might be a suitable tool in studying interface and surface morphology properties in nanosystems.
基金supported by the National Natural Science Foundation of China(Nos.81373373,21435002,21227006)
文摘A novel chemiluminescence(CL) performance of CdTe/CdS/ZnS quantum dots(QDs) with periodate(KIO_4) was studied.Effects of concentration and pH on the CL system were investigated.Electron spin resonance(ESR) and the effects of radical scavenger analysis were employed for identification of intermediate species.The CL spectra for this system showed only one maximum emission peak centered around 620 nm,which was similar with photoluminescence(PL) spectra of CdTe/CdS/ZnS QDs.The CL of CdTe/CdS/ZnS QDs was induced by direct chemical oxidation and the possible mechanism could be explained by radiative recombination of injected holes and electrons.This investigation not only provided new sight into the optical characteristics of CdTe/CdS/ZnS QDs,but also broadened their potential optical utilizations.
基金Project(2006CB601005) supported by the National Basic Research Program of Chinaproject(200331) supported by the National Excellent Doctoral Dissertations of Chinaproject(Q5009001200801) supported by the Post-Doctoral Science and Technology Foundation from Beijing University of Technology
文摘Poly(organophosphazenes) have potential applications in making water-soluble and biocompatible quantum dots (QDs) due to their wide variety of properties. The CdSe QDs of green emission and the core-shell CdSe/ZnS QDs of red emission were prepared. Subsequently the trioctylphosphine oxide-stabilized CdSe/ZnS QDs were transferred from chloroform into water through a ligand exchange process with poly(glycino amino acid)phosphazenes, which can be obtained from the saponification of poly (glycino amino ester)phosphazenes at room temperature. The resulting QDs-polymer nanocomposite particles can form colloidally stable suspensions in water and exhibit good photostability.
基金The Fundamental Research Funds for the Central Universities,China(No.2232015D3-15)Shanghai Natural Science Foundation,China(No.14ZR1401300)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Novel CdTe/CdS quantum dots(QDs)coated with a hybrid of SiO_2 and ZnS were fabricated through a simple two-step approach.The hybrid SiO_2/ZnS coated CdTe/CdS quantum dots was characterized by transmission electron microscopy(TEM),UV and fluorescence spectrometer.Results indicated that the core-shell structure gave the QDs outstanding photoluminescence properties,includinganarrowphotoluminescencespectrum,high photoluminescence(PL)quantum yield and long emission lifetime(average PL lifetime of increased from 26.4 ns to 49.1 ns).Cellular studies showed the QDs had good cytocompatibility with Hela cells as determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT)assay after coating SiO_2/ZnS,and also proved the feasibility of using the hybrid SiO_2/ZnS coated QDs as optical probes for in vitro cell imaging.The synthesis method of QDs is highly promising for the production of robust and functional optical probes for bio-imaging and sensing applications.
基金National Natural Science Foundation of China(No.51775522)Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi Province(No.2020L0638)+2 种基金Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement(No.201905D121001)Shanxi“1331 Project”Key Subjects ConstructionApplied Basic Research Program in Shanxi Province(Nos.201901D211203,201801D221230)。
文摘The optical properties of CdSe/ZnS quantum dots(QDs)embedded in polydimethylsiloxane(PDMS)flexible materials after irradiated withγ-rays were studied.As an embedding matrix,PDMS exhibits the advantage of high radiation hardness.The luminescence spectra and fluorescence lifetime of the irradiated and unirradiated samples were tested.The fluorescence intensity of QDs decreases with the increase of the irradiation dose according to the result of luminescence spectra.The fluorescence intensity of the QDs decreases by 80%after irradiation with a dose of 1 kGy,but the position of the emission peak and the spectral shape of the QDs remain consistent before and after irradiation.In addition,the fluorescence lifetime of QDs is shortened after irradiation.Based on the fluorescence response of QDs to the irradiation ofγ-rays and combined with flexible materials,our work provides a theoretical basis for the application of QDs as a new wearable dosimeter.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61904098 and 11904209)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QF018)Higher Education Research and Development Program of Shandong Province,China(Grant No.J18KA242).
文摘The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod(NR)array films as the template.Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs,the uniquely etched and W-doped ZnO(EWZ)nanotube(NT)array films with larger surface area,more active sites and better energy band structure were used to improve the photoelectrochemical(PEC)performance and the loading quality of CdS quantum dots(QDs).On the basis of their better surface characteristics,the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection;this effectively improved the light-harvesting ability,charge transportation and separation as well as charge injection efficiency during the PEC reaction.Therefore,all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance.The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA·cm^(-2),2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs.The corresponding etching and optimizing mechanisms were also discussed.
基金the National Natural Science Foundation of China(No 30570465) the Municipal Science and Technology Committee of Chongqing
文摘Water-soluble CdS quantum dots(CdS-QDs) capped with thioglycohc acid were easily prepared, and a detection method of adriamycin was presented based on the fluorescence quenching of CdS-QDs. It was found that a complex could be formed between cetyhrimethyl ammonium bromide(CTAB) and CdS-QDs by using electrostatic interaction in Britton-Robinson(BR) buffer at pH = 7.00, and the strong fluorescence emission of the complex was observed at 500 nm when the complex was excited at 378 run. The presence of adriamycin, however, could strongly quench the fluorescence through hydrophobic interaction. The overall quenching percentage as a function of adriamycin concentration matches the Stern-Volmer equation very well. These properties make CdS-QDs a potential fluorescence probe for the detection of adriamycin. The detection hmit(3σ) of adriamycin is approximately 10^-9 mol/L.
基金Project(50772133) supported by the National Natural Science Foundation of China
文摘A rapid, ultrasensitive and convenient fluorescence measurement technology based on the enhancement of the fluorescence intensity resulting from the interaction of functionalized CdSe/CdS quantum dots (QDs) with bov/ne serum albumin (BSA) was proposed. The citrate-stabilized CdSe/CdS (QDs) were synthesized by using Se powder and Na2S as precursors instead of any pyrophoric organometallic precursors. The modified CdSe/CdS QDs are brighter and more stable against photobleaching in comparison with organic fluorophores. At pH 7.0, the fluorescence signal of CdSe/CdS is enhanced by increasing the concentration of BSA in the range of 0.1-10 μg/mL, and the low detection limit is 0.06 μg/mL. A linear relationship between the enhanced fluorescence peak intensity (△F) and BSA concentration (c) is established using equation △F=50.7c+16.4 (R=0.996 36). Results of determination for BSA in three synthetic samples are identical with the true values, and the recovery (98.9%-102.4%) and relative standard deviation (RSD, 1.8%-2.5%) are satisfactory.
文摘The interaction between CdS quantum dots and amino polysaccharide chitosan in aqueous solution was studied via photoluminescence (PL) spectra. The surface binding of chitosan with different molecular weight (MW) quenched the luminescence of QDs due to the elimination of radioactive anion vacancy centers. This process fits well with the Perrin model; lower MW chitosan exhibits higher quenching efficiency due to better availability to the surface.
基金Supported by the Measurement and Testing Center of Zhejiang Province, China(No.02079).
文摘The influence of surface S^2- dangling bonds and surface doped ions(Se^2-, Cu^2+, and Hg^2+) on the photoluminescence of Cd^2+-rich CdS QDs was investigated. A quantitative model was proposed to understand the complex transfer processes of excited electrons in CdS QDs. The transfer of excited electrons from either the conduction band or the Cd^2+-related trap-state to the surface S^2-related shallow hole trap-state is effective. However, the trap of excited electrons by surface doped ion trap-states from the Cd^2+-related trap-state is more effective than that from the conduction band. The efficiency of trapping electrons from both the conduction band and the Cd^2+-related trap-state can be quantitatively understood with the help of the proposed model. The results show that the transfer efficiency of excited electrons is dependent on the location of the energy-level of the relevant surface-related trap-state. The trap of excited electrons by the surface trap-state with energy-level closer to that of the conduction band is more effective, especially for the trap of excited electrons from Cd^2+-related trap-state.
基金supported by the National Natural Science Foundation of China(No.20705019)National High-Tech R&D Program(No.2006AA03Z324)
文摘In the study, we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF), fluorescence spectrometry and fluorescence correlation spectroscopy (FCS) were used to characterize the QDs conjugates with antibody. We found that the QDs-antibody conjugates possessed high fluorescence, small hydrodynamic radii and good stability in aqueous solution. 2009 Ji Cun Ren. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘In the present work,a solution-based co-precipitation method has been adopted to synthesize pure and cobalt-doped ZnS quantum dots and characterized by XRD,SEM,TEM with EDX,FTIR and gas sensing properties.XRD analysis has shown a single phase of ZnS quantum dots having a zinc blend structure.TEM and XRD line broadening indicated that the average crystallite size in the sample is in the range of 2 to 5 nm.SEM micrographs show spherical-shaped quantum dots.FTIR studies show that cobalt has been successfully doped into the ZnS cubic lattice.EDX spectra have analyzed the elemental presence in the samples and it is evident that the spectra confirmed the presence of cobalt(Co),zinc(Zn),oxygen(O),and sulphur(S)elements only and no other impurities are observed.The ZnS-based quantum dot sensors reveal high sensitivity towards 50 ppm of ammonia vapors at an operating temperature of 70℃.Hence,ZnS-based quantum dots can be a promising and quick traceable sensor towards ammonia sensing applications with good response and recovery time.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFA0306304)the National Natural Science Foundation of China(Grant No.11674069)
文摘We investigated the optical properties of hybrid exciton–plasmon coupling ensembles composed of ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution. We modulated their average interval by changing the ratio of quantum dots and Ag nanoparticles. The transition from dramatic PL enhancement to PL quenching state was experimentally observed, according to the continuous decrease of the PL lifetime. The PL enhancement rate exceeded 10, with the Purcell factor of 3.5. Meanwhile, the proportion of fast decay increased from 0.3 to 0.6, corresponding to the proportion of slow decay decreased from 0.7 to 0.4. Our experiment is important for the hybrid exciton–plasmon coupling system to be practicable in optoelectronic application.
文摘纳米技术研究体系中量子点是重要的研究模块之一,量子点尺寸非常小,具有独特的光物理特性。该文旨通过实验进行分析,实验过程选择99%纯度硼氢化钠、99%纯度硫酸锌、S212恒速搅拌器、TG16-WS高速离心机、0.310 mL巯基乙酸等,制备0.4565 g CdCl_(2)·2.5H_(2)O混合液,当样本溶液呈现橙色时,表明CdTe核已制备完成。实验结果显示:单脉冲能量增加时,τ_(-rise)与τ_(2)有所降低,τ_(1)数值增加,τ_(-rise)与壳层厚度呈正比关系。通过对量子点荧光特性的分析,有利于促进核壳结构量子点的制备。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304300,21002097,11074232,and 11274288)the National Basic Research Program of China(Grant Nos.2011CB932801 and 2012CB933702)+2 种基金the Fund from the Ministry of Education of China(Grant No.20123402110034)the Fundamental Research Funds for the Central Universities(Grant No.WK2030420002)the Anhui Provincial Natural Science Foundation,China(Grant No.1308085QA06)
文摘The temperature dependence of the photoluminescence(PL) from Mn S/Zn S core–shell quantum dots is investigated in a temperature range of 8 K–300 K. The orange emission from the ^4T1→^6A1transition of Mn^2+ions and the blue emission related to the trapped surface state are observed in the Mn S/Zn S core–shell quantum dots. As the temperature increases, the orange emission is shifted toward a shorter wavelength while the blue emission is shifted towards the longer wavelength. Both the orange and blue emissions reduce their intensities with the increase of temperature but the blue emission is quenched faster. The temperature-dependent luminescence intensities of the two emissions are well explained by the thermal quenching theory.