The Bi2S3,CdS and Bi2S3/CdS photocatalysts were prepared by direct reactions between their corresponding salt and thiourea in a hy- drothermal autoclave.The photocatalytic activities of these photocatalysts for reduci...The Bi2S3,CdS and Bi2S3/CdS photocatalysts were prepared by direct reactions between their corresponding salt and thiourea in a hy- drothermal autoclave.The photocatalytic activities of these photocatalysts for reducing CO2 to CH3OH under visible light irradiation have been investigated.The results show that the photocatalytic activity and visible light response of Bi2S3 are higher than those of CdS.The Bi2S3 modification can enhance the photocatalytic activity and visible light response of CdS.The photocatalytic activity of Bi2S3/CdS hetero-junction photocatalyst was the highest and the highest yields of methanol was 613μmol/g when the weight proportion of Bi2S3 to CdS was 15%,which was about three times as large as that of CdS or two times of that of Bi2S3.展开更多
Novel CdS and Bi2S3 hollow nanospheres were prepared by simple “one-pot” biomolecule-assisted hydrothermal method using glutathione (GSH) as sulfur source and structure-directing reagents. The single-phase CdS and B...Novel CdS and Bi2S3 hollow nanospheres were prepared by simple “one-pot” biomolecule-assisted hydrothermal method using glutathione (GSH) as sulfur source and structure-directing reagents. The single-phase CdS and Bi2S3 photocatalysts were capable of evolving H2 from aqueous solutions containing a sacrificial electron donor, under visible light irradiation (λ ≥ 420 nm) with Pt co-catalyst. A possible formation mechanism of complexation, S-C bond rupture, and spherical aggregate followed isotropic Ostwal ripening or anisotropic Ostwal ripening was proposed in this study.展开更多
We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2 O3 film modified by gold nanoparticles. The photoluminescence(PL) spectra of nanowires are in s...We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2 O3 film modified by gold nanoparticles. The photoluminescence(PL) spectra of nanowires are in situ measured by using a scanning near-field optical microscopy(SNOM) probe tip with 100-nm aperture on the scanning near-field optical microscope. The results show that the binding sites from the edge of porous Al2 O3 nanopores are combined with the carboxyl of CdSe quantum dots’ surface to form an array of CdSe nanowires in the process of losing background solvent because of the gold nanoparticles filling the nano-holes of porous Al2 O3 film. Compared with the area of nonself-assembled nano-wire, the fluorescence on the Al2 O3/Au/CdSe interface is significantly enhanced in the self-assembly nano-wire regions due to the electron transfer conductor effect of the gold nanoparticles’ surface. In addition, its full width at half maximum(FWHM) is also obviously widened. The method of enhancing fluorescence and energy transfer can widely be applied to photodetector, photocatalysis, optical display, optical sensing, and biomedical imaging, and so on.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffra...文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffraction,RHEED)、原子力显微镜(atomic force microscope,AFM)进行表面形貌的表征;利用X射线衍射仪(X-ray diffraction,XRD)和X射线能谱仪(energy dispersive X-ray spectroscopy,EDS)对样品的晶相和化学组分进行分析筛样。结果表明,衬底温度为390℃时制备的Bi_2Se_3薄膜表面平整、成分接近理想配比、结晶质量较好。最后利用综合物性测量系统测量了最佳衬底温度制备的样品的电学性质,表明样品为n型拓扑绝缘体薄膜。展开更多
基金supported by the National Natural Science Foundation of China(No.20906034)the Key Academic Program of the 3rd Phase"211 Project" of South China Agricultural University(No.2009B010100001)China Postdoctoral Science Foundation(No.20080430820)
文摘The Bi2S3,CdS and Bi2S3/CdS photocatalysts were prepared by direct reactions between their corresponding salt and thiourea in a hy- drothermal autoclave.The photocatalytic activities of these photocatalysts for reducing CO2 to CH3OH under visible light irradiation have been investigated.The results show that the photocatalytic activity and visible light response of Bi2S3 are higher than those of CdS.The Bi2S3 modification can enhance the photocatalytic activity and visible light response of CdS.The photocatalytic activity of Bi2S3/CdS hetero-junction photocatalyst was the highest and the highest yields of methanol was 613μmol/g when the weight proportion of Bi2S3 to CdS was 15%,which was about three times as large as that of CdS or two times of that of Bi2S3.
文摘Novel CdS and Bi2S3 hollow nanospheres were prepared by simple “one-pot” biomolecule-assisted hydrothermal method using glutathione (GSH) as sulfur source and structure-directing reagents. The single-phase CdS and Bi2S3 photocatalysts were capable of evolving H2 from aqueous solutions containing a sacrificial electron donor, under visible light irradiation (λ ≥ 420 nm) with Pt co-catalyst. A possible formation mechanism of complexation, S-C bond rupture, and spherical aggregate followed isotropic Ostwal ripening or anisotropic Ostwal ripening was proposed in this study.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61741505 and 61865002)the Guizhou Provincial Science and Technology Support Plan,China(Grant No QKHZ [2017]2887)+3 种基金the Guiding Local Science and Technology Development Plan of the Central Government of China(Grant No.QKZYD [2017]4004)the Guizhou Province Education and Teaching Reform for Graduate Student(Grant No.QJYH-JG [2016]15)the Guizhou University Introduces Talent Projects,China(Grant No.2016002)the Talents of Guizhou Municipal Science and Technology Cooperation Platform,China(Grant No.[2018]5781)
文摘We present a self-assembly method to prepare array nano-wires of colloidal CdSe quantum dots on a substrate of porous Al2 O3 film modified by gold nanoparticles. The photoluminescence(PL) spectra of nanowires are in situ measured by using a scanning near-field optical microscopy(SNOM) probe tip with 100-nm aperture on the scanning near-field optical microscope. The results show that the binding sites from the edge of porous Al2 O3 nanopores are combined with the carboxyl of CdSe quantum dots’ surface to form an array of CdSe nanowires in the process of losing background solvent because of the gold nanoparticles filling the nano-holes of porous Al2 O3 film. Compared with the area of nonself-assembled nano-wire, the fluorescence on the Al2 O3/Au/CdSe interface is significantly enhanced in the self-assembly nano-wire regions due to the electron transfer conductor effect of the gold nanoparticles’ surface. In addition, its full width at half maximum(FWHM) is also obviously widened. The method of enhancing fluorescence and energy transfer can widely be applied to photodetector, photocatalysis, optical display, optical sensing, and biomedical imaging, and so on.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
文摘文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffraction,RHEED)、原子力显微镜(atomic force microscope,AFM)进行表面形貌的表征;利用X射线衍射仪(X-ray diffraction,XRD)和X射线能谱仪(energy dispersive X-ray spectroscopy,EDS)对样品的晶相和化学组分进行分析筛样。结果表明,衬底温度为390℃时制备的Bi_2Se_3薄膜表面平整、成分接近理想配比、结晶质量较好。最后利用综合物性测量系统测量了最佳衬底温度制备的样品的电学性质,表明样品为n型拓扑绝缘体薄膜。
基金Supported by the National Natural Science Foundation of China(11304092,51371079,11305056,11304299,51602099)the Open Foundation of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy(HBSKFZD2014001,HBSKFM2014006,HBSKFM2014013,HBSKFM2014015)