In this work, a double signal amplified immunosen- sor based on the enhanced CdSe@ZnS quantum dots (QDs) electrochemiluminescence (ECL) via TiO2 nanoparticles (TiO2 NPs) and the outstanding quencher of polydopam...In this work, a double signal amplified immunosen- sor based on the enhanced CdSe@ZnS quantum dots (QDs) electrochemiluminescence (ECL) via TiO2 nanoparticles (TiO2 NPs) and the outstanding quencher of polydopamine (PDA) decorated Au nanoparticles (Au@PDA NPs) for ultrasensitive detection of carcinoembryonic antigen (CEA) has been successfully achieved. The ECL of CdSe@ZnS QDs with different sizes has been investigated carefully, especially cooperation with TiO2 NPs. Au@PDA NPs have been synthesized and characterized by transmission electron microscopy (TEM) and UV-Vis spectrum, which acted as ECL quenchers to label the secondary antibody (Ab2) of CEA to form Ab2/Au@PDA NPs conjugates. The sandwich-structured immunosensor was formed between capture antibody (Abl) on CdSe@ZnS QDs/TiO2 NPs/glassy carbon electrode, CEA and Ab2/Au@PDA NPs conjugates, resulting in a proportional ECL quenching signal relevant to the CEA concentration. Thus, CEA as a model biomarker has been detected in the linear range from 0.001 to 100 ng mL^-1 with a limit of detection of 0.35 pg mL^-1 (S/N = 3).展开更多
Multicolor electrochemiluminescence(ECL) of semiconductor nanocrystals tuned by size effect has been successfully achieved using quantum dots(QDs) with core-shell structure for the first time. It would open a new way ...Multicolor electrochemiluminescence(ECL) of semiconductor nanocrystals tuned by size effect has been successfully achieved using quantum dots(QDs) with core-shell structure for the first time. It would open a new way and provide a guidance for design and preparation of stable and strong multicolor ECL emitters for simultaneous multicomponent analysis application.展开更多
基金supported by the National Natural Science Foundation of China (21575022, 21535003)the National High Technology Research and Development Program of China (2015AA020502)+1 种基金the Open Research Fund of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast Universitythe Fundamental Research Funds for the Central Universities (KYLX15-0127)
文摘In this work, a double signal amplified immunosen- sor based on the enhanced CdSe@ZnS quantum dots (QDs) electrochemiluminescence (ECL) via TiO2 nanoparticles (TiO2 NPs) and the outstanding quencher of polydopamine (PDA) decorated Au nanoparticles (Au@PDA NPs) for ultrasensitive detection of carcinoembryonic antigen (CEA) has been successfully achieved. The ECL of CdSe@ZnS QDs with different sizes has been investigated carefully, especially cooperation with TiO2 NPs. Au@PDA NPs have been synthesized and characterized by transmission electron microscopy (TEM) and UV-Vis spectrum, which acted as ECL quenchers to label the secondary antibody (Ab2) of CEA to form Ab2/Au@PDA NPs conjugates. The sandwich-structured immunosensor was formed between capture antibody (Abl) on CdSe@ZnS QDs/TiO2 NPs/glassy carbon electrode, CEA and Ab2/Au@PDA NPs conjugates, resulting in a proportional ECL quenching signal relevant to the CEA concentration. Thus, CEA as a model biomarker has been detected in the linear range from 0.001 to 100 ng mL^-1 with a limit of detection of 0.35 pg mL^-1 (S/N = 3).
基金supported by the National Natural Science Foundation of China (21575022, 21535003)the National High Technology Research and Development Program of China (2015AA020502)+1 种基金the Open Research Fund of Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast Universitythe Fundamental Research Funds for the Central Universities (KYLX15-0127)
文摘Multicolor electrochemiluminescence(ECL) of semiconductor nanocrystals tuned by size effect has been successfully achieved using quantum dots(QDs) with core-shell structure for the first time. It would open a new way and provide a guidance for design and preparation of stable and strong multicolor ECL emitters for simultaneous multicomponent analysis application.