We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets....We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets.The as-formed heterojunctions exhibit a significantly enhanced photocatalytic H_(2) evolution rate of 14.02 mmol h^(-1) g^(-1) when irradiated with visible light,which is~10 and 85 times higher than those of pristine CdS nanosheets and CdS nanoparticles,respectively,and superior to most of the CdS-based photocatalysts reported to date.Furthermore,they provide robust photocatalytic performance with demonstratable stability over 58 h,indicating their potential for practical applications.The formation of 1D/2D heterojunctions not only provides improved exposed active sites that respond to illumination but also provides a rapid pathway to generate photogenerated carriers for efficient separation and transfer through the matrix of single-crystalline CdS nanosheets.In addition,first-principles simulations demonstrate that the existence of rich Zn vacancies increases the energy level of the ZnS valence band maximum to construct type-II and Z-scheme mixed heterojunctions,which plays a critical role in suppressing the recombination of carriers with limited photocorrosion of CdS to enhance photocatalytic behavior.展开更多
In this paper, interface engineering via sputtering of CdO nanolayer at the buffer-CdS/CdTe-absorber interface is demonstrated as an efficient approach to improve the performance of solar cell device. The i-CdO interf...In this paper, interface engineering via sputtering of CdO nanolayer at the buffer-CdS/CdTe-absorber interface is demonstrated as an efficient approach to improve the performance of solar cell device. The i-CdO interfacial layer with various thicknesses from 5 nm to 35 nm was deposited by DC magnetron sputtering. Comparative studies on TCO/CdS/CdTe and TCO/CdS/CdO/CdTe interfaces have been conducted by current-voltage, capacitance-voltage and admittance spectroscopy measurements. The current-voltage characteristics of the devices with an area of 0.45 cm<sup>2</sup> under 100 mW/cm<sup>2</sup> illumination, at the optimum thickness of CdO intermediate layer in the proposed structures, show increases of the short circuit current density and the open circuit voltage by 5% and 25%, respectively. The efficiency improvement of 3.1% of p-i-n cell over p-n cell is observed. Results of the temperature-dependent current-voltage and admittance measurements revealed the removing of the deep level defect with the activation energy of 0.43 eV and the reducing of the ideality factor from 1.9 to 1.8 via buffer/absorber interfacial passivation method. Interface passivation appears to be critical to improve the short circuit current density and the open circuit voltage, and CdO thin film is clearly effective for this purpose.展开更多
Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectr...Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h–1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.展开更多
The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporou...The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.展开更多
Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recom...Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.展开更多
The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we desi...The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.展开更多
Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical(PEC)water splitting.Among the many obstacles facing a Z-scheme photocatalytic system,the analysis methods of inte...Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical(PEC)water splitting.Among the many obstacles facing a Z-scheme photocatalytic system,the analysis methods of interfacial Z-scheme charge transfer still remain a significant challenge.Hence,in this study,CdS/Ti-Fe_(2)O_(3)heterojunction photoanodes are elaborately designed to explore the charge-transfer behavior in PEC water splitting.In this study,photophysical measurements,including the Kelvin probe measurement,surface photovoltage spectroscopy(SPV),and transient photovoltage spectroscopy(TPV),are used to monitor the migration behavior of photogenerated charges at the interface electric field of CdS/Ti-Fe_(2)O_(3)Z-scheme heterojunction photoanodes.The Kelvin probe and SPV measurements demonstrate that CdS/Ti-Fe_(2)O_(3)interfacial driving force favors the rapid transfer of photoexcited electrons to CdS.The double-beam strategy based on TPV indicates that more electrons of Ti-Fe_(2)O_(3)are combined with the holes of CdS owing to the intensive interface electric field.The results of these measurements successfully prove the Z-scheme migration mechanism of CdS/Ti-Fe_(2)O_(3)photoanodes.Benefiting from the desirable charge transfer at the interface electric field,CdS/Ti-Fe_(2)O_(3)photoanodes exhibit superior photocatalytic oxygen evolution reaction performance compared with that of pure Ti-Fe_(2)O_(3).The photocurrent density of the 25CdS/Ti-Fe_(2)O_(3)photoanode reaches 1.94 mA/cm^(2) at 1.23 V versus reversible hydrogen electrode without excess cocatalyst,and it is two times higher than that of pure Ti-Fe_(2)O_(3)photoanode.Therefore,an outstanding strategy is provided in this study to prove the Z-scheme charge-transfer mechanism of photocatalytic systems in PEC water splitting.展开更多
The g-C_(3)N_(4)/BiOI/CdS double Z-scheme heterojunction photocatalyst with I_(3)^(-)/I^(-) redox pairs is prepared using simple calcination,solvothermal,and solution chemical deposition methods.The photocatalyst comp...The g-C_(3)N_(4)/BiOI/CdS double Z-scheme heterojunction photocatalyst with I_(3)^(-)/I^(-) redox pairs is prepared using simple calcination,solvothermal,and solution chemical deposition methods.The photocatalyst comprised mesoporous,thin g-C_(3)N_(4) nanosheets loaded on flower-like microspheres of BiOI with CdS quantum dots.The g-C_(3)N_(4)/BiOI/CdS double Z-scheme heterojunction has abundant active sites and in situ redox I_(3)^(-)/I^(-) mediators and shows quantum size effects,which are all conducive to enhancing the separation of photoinduced charges and increasing the photocatalytic degradation efficiency for bisphenol A,a model pollutant.Specifically,the heterojunction photocatalyst achieves a photocatalytic degradation efficiency for bisphenol A of 98.62%in 120 min and photocatalytic hydrogen production of 863.44 mmol h^(-1) g^(-1) on exposure to visible light.The excellent visible-light photocatalytic performance is as a result of the Z-scheme heterojunction,which extends absorption to the visible light region,as well as the I_(3)^(-)/I^(-) pairs,which accelerate photoinduced charge carrier transfer and separation,thus dramatically boosting the photocatalytic performance.In addition,the key role of the charge transfer across the indirect Z-scheme heterojunction has been elucidated and the transfer mechanism is confirmed based on the detection of intermediate I_(3)^(-)ions.Thus,this study provides guidelines for the design of indirect Z-scheme heterojunction photocatalysts.展开更多
Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consist...Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C‐dots(C‐dots/CdS NWs)were synthesized using chemical deposition methods.The mass fraction of C‐dots to CdS NWs in these photocatalysts was varied.The photocatalysts were characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,and ultraviolet‐visible spectroscopy.Their photocatalytic performance for the spitting of water and the degradation of rhodamine B(RhB)under visible light irradiation were investigated.The photocatalytic performance of the C‐dots/CdS NWs was enhanced when compared with that of the pure CdS NWs,with the 0.4%C‐dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB.The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C‐dots and CdS NWs.This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.展开更多
The In-doped CdTe/Si (p) heterostruture was fabricated and its electrical and photoelectrical properties were studied and interpreted. During the fabrication processes of CdTe/Si heterojunction, some practical trouble...The In-doped CdTe/Si (p) heterostruture was fabricated and its electrical and photoelectrical properties were studied and interpreted. During the fabrication processes of CdTe/Si heterojunction, some practical troubles were encountered. However, the important one was the formation of the SiO2 thin oxide layer on the soft surface of the Si during the formation of the back contact. The silicon wafer was subjected to different chemical treatments in order to remove the thin oxide layer from the silicon wafer surfaces. It was found that the heterojunction with Si (p+) substrate gave relatively high open circuit voltage comparing with that of Si (p) substrate. Also an electroforming phenomenon had been observed in this structure for the first time which may be considered as a memory effect. It was observed that there are two states of conduction, non-conducting state and conducting state. The normal case is the non-conducting state. As the forward applied voltage increased beyond threshold value, it switches into the conducting state and remains in this state even after the voltage drops to zero.展开更多
Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunc...Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and Cd S nanofilms on the ITO glass in turn.The relation of current density to applied voltage(I-V)shows the obvious rectification effect.From the analysis of the double logarithm I-V curve it follows that below~2.73 V the electron behaviors obey the Ohmic mechanism and above~2.73 V the electron behaviors conform to the space charge limited current(SCLC)mechanism.In the SCLC region part of the traps between the Fermi level and conduction band are occupied,and with the increase of voltage most of the traps are occupied.It is believed that Cd S/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure.展开更多
基金Hunan Provincial Innovation Foundation for Postgraduate,Grant/Award Number:CX20200454National Natural Science Foundation of China,Grant/Award Number:51972178。
文摘We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets.The as-formed heterojunctions exhibit a significantly enhanced photocatalytic H_(2) evolution rate of 14.02 mmol h^(-1) g^(-1) when irradiated with visible light,which is~10 and 85 times higher than those of pristine CdS nanosheets and CdS nanoparticles,respectively,and superior to most of the CdS-based photocatalysts reported to date.Furthermore,they provide robust photocatalytic performance with demonstratable stability over 58 h,indicating their potential for practical applications.The formation of 1D/2D heterojunctions not only provides improved exposed active sites that respond to illumination but also provides a rapid pathway to generate photogenerated carriers for efficient separation and transfer through the matrix of single-crystalline CdS nanosheets.In addition,first-principles simulations demonstrate that the existence of rich Zn vacancies increases the energy level of the ZnS valence band maximum to construct type-II and Z-scheme mixed heterojunctions,which plays a critical role in suppressing the recombination of carriers with limited photocorrosion of CdS to enhance photocatalytic behavior.
文摘In this paper, interface engineering via sputtering of CdO nanolayer at the buffer-CdS/CdTe-absorber interface is demonstrated as an efficient approach to improve the performance of solar cell device. The i-CdO interfacial layer with various thicknesses from 5 nm to 35 nm was deposited by DC magnetron sputtering. Comparative studies on TCO/CdS/CdTe and TCO/CdS/CdO/CdTe interfaces have been conducted by current-voltage, capacitance-voltage and admittance spectroscopy measurements. The current-voltage characteristics of the devices with an area of 0.45 cm<sup>2</sup> under 100 mW/cm<sup>2</sup> illumination, at the optimum thickness of CdO intermediate layer in the proposed structures, show increases of the short circuit current density and the open circuit voltage by 5% and 25%, respectively. The efficiency improvement of 3.1% of p-i-n cell over p-n cell is observed. Results of the temperature-dependent current-voltage and admittance measurements revealed the removing of the deep level defect with the activation energy of 0.43 eV and the reducing of the ideality factor from 1.9 to 1.8 via buffer/absorber interfacial passivation method. Interface passivation appears to be critical to improve the short circuit current density and the open circuit voltage, and CdO thin film is clearly effective for this purpose.
基金supported by the National Natural Science Foundation of China(51502155,51572152,21673127,21671119)the Research Project of Hubei Provincial Department of Education(D20151203)the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(20170020)~~
文摘Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h–1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176044 and 11074224)the Science and Technology Project for Innovative Scientist of Henan Province,China(Grant No.1142002510017)the Science and Technology Project on Key Problems of Henan Province,China(Grant No.082101510007)
文摘The electron transport behavior across the interface plays an important role in determining the performance of op- toelectronic devices based on heterojunctions. Here through growing CdS thin film on silicon nanoporous pillar array, an untraditional, nonplanar, and multi-interface CdS/Si nanoheterojunction is prepared. The current density versus voltage curve is measured and an obvious rectification effect is observed. Based on the fitting results and model analyses on the forward and reverse conduction characteristics, the electron transport mechanism under low forward bias, high forward bias, and reverse bias are attributed to the Ohmic regime, space-charge-limited current regime, and modified Poole-Frenkel regime respectively. The forward and reverse electrical behaviors are found to be highly related to the distribution of inter- facial trap states and the existence of localized electric field respectively. These results might be helpful for optimizing the preparing procedures to realize high-performance silicon-based CdS optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074037,61574038,51961165108,and 51972332)the Natural Science Foundation of Fujian Province,China(Grant No.2017J01503)+2 种基金the Education and Scientific Research Project of Fujian Province,China(Grant No.JAT190010)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,China(Grant No.SKLPEE-202011)Fuzhou University,China。
文摘Flexible Cu2ZnSn(S,Se)4(CZTSSe)solar cells show great potential applications due to low-cost,nontoxicity,and stability.The device performances under an especial open circuit voltage(VOC)are limited by the defect recombination of CZTSSe/CdS heterojunction interface.We improve the deposition technique to obtain compact CdS layers without any pinholes for flexible CZTSSe solar cells on Mo foils.The efficiency of the device is improved from 5.7%to 6.86%by highquality junction interface.Furthermore,aiming at the S loss of CdS film,the S source concentration in deposition process is investigated to passivate the defects and improve the CdS film quality.The flexible Mo-foil-based CZTSSe solar cells are obtained to possess a 9.05%efficiency with a VOC of 0.44 V at an optimized S source concentration of 0.68 mol/L.Systematic physical measurements indicate that the S source control can effectively suppress the interface recombination and reduce the VOCdeficit.For the CZTSSe device bending characteristics,the device efficiency is almost constant after1000 bends,manifesting that the CZTSSe device has an excellent mechanical flexibility.The effective improvement strategy of CdS deposition is expected to provide a new perspective for promoting the conversion efficiency of CZTSSe solar cells.
文摘The rapid recombination of photo-generated electron-hole pairs,insufficient active sites,and strong photocorrosion have considerably restricted the practical application of Cd S in photocatalytic fields.Herein,we designed and constructed a 2D/2D/2D layered heterojunction photocatalyst with cascaded 2D coupling interfaces.Experiments using electron spin resonance spectroscopy,ultraviolet photoelectron spectroscopy,and in-situ irradiation X-ray photoelectron spectroscopy were conducted to confirm the 2D layered CdS/WO_(3) step-scheme(S-scheme)heterojunctions and CdS/MX ohmic junctions.Impressively,it was found that the strong interfacial electric fields in the S-scheme heterojunction photocatalysts could effectively promote spatially directional charge separation and transport between CdS and WO_(3) nanosheets.In addition,2D Ti_(3)C_(2) MXene nanosheets with a smaller work function and excellent metal conductivity when used as a co-catalyst could build ohmic junctions with Cd S nanosheets,thus providing a greater number of electron transfer pathways and hydrogen evolution sites.Results showed that the highest visible-light hydrogen evolution rate of the optimized MX-Cd S/WO_(3) layered multi-heterostructures could reach as high as 27.5 mmol/g/h,which was 11.0 times higher than that of pure CdS nanosheets.Notably,the apparent quantum efficiency reached 12.0% at 450 nm.It is hoped that this study offers a reliable approach for developing multifunctional photocatalysts by integrating S-scheme and ohmic-junction built-in electric fields and rationally designing a 2D/2D interface for efficient light-to-hydrogen fuel production.
文摘Z-scheme photocatalytic system has been regarded as a popular field of research in photoelectrochemical(PEC)water splitting.Among the many obstacles facing a Z-scheme photocatalytic system,the analysis methods of interfacial Z-scheme charge transfer still remain a significant challenge.Hence,in this study,CdS/Ti-Fe_(2)O_(3)heterojunction photoanodes are elaborately designed to explore the charge-transfer behavior in PEC water splitting.In this study,photophysical measurements,including the Kelvin probe measurement,surface photovoltage spectroscopy(SPV),and transient photovoltage spectroscopy(TPV),are used to monitor the migration behavior of photogenerated charges at the interface electric field of CdS/Ti-Fe_(2)O_(3)Z-scheme heterojunction photoanodes.The Kelvin probe and SPV measurements demonstrate that CdS/Ti-Fe_(2)O_(3)interfacial driving force favors the rapid transfer of photoexcited electrons to CdS.The double-beam strategy based on TPV indicates that more electrons of Ti-Fe_(2)O_(3)are combined with the holes of CdS owing to the intensive interface electric field.The results of these measurements successfully prove the Z-scheme migration mechanism of CdS/Ti-Fe_(2)O_(3)photoanodes.Benefiting from the desirable charge transfer at the interface electric field,CdS/Ti-Fe_(2)O_(3)photoanodes exhibit superior photocatalytic oxygen evolution reaction performance compared with that of pure Ti-Fe_(2)O_(3).The photocurrent density of the 25CdS/Ti-Fe_(2)O_(3)photoanode reaches 1.94 mA/cm^(2) at 1.23 V versus reversible hydrogen electrode without excess cocatalyst,and it is two times higher than that of pure Ti-Fe_(2)O_(3)photoanode.Therefore,an outstanding strategy is provided in this study to prove the Z-scheme charge-transfer mechanism of photocatalytic systems in PEC water splitting.
基金support of this work by the National Natural Science Foundation of China(51869006)Jiangxi Natural Science Foundation of China(20171BAB216050)Water Science and Technology Fund of Jiangxi Province in China(KT201702).
文摘The g-C_(3)N_(4)/BiOI/CdS double Z-scheme heterojunction photocatalyst with I_(3)^(-)/I^(-) redox pairs is prepared using simple calcination,solvothermal,and solution chemical deposition methods.The photocatalyst comprised mesoporous,thin g-C_(3)N_(4) nanosheets loaded on flower-like microspheres of BiOI with CdS quantum dots.The g-C_(3)N_(4)/BiOI/CdS double Z-scheme heterojunction has abundant active sites and in situ redox I_(3)^(-)/I^(-) mediators and shows quantum size effects,which are all conducive to enhancing the separation of photoinduced charges and increasing the photocatalytic degradation efficiency for bisphenol A,a model pollutant.Specifically,the heterojunction photocatalyst achieves a photocatalytic degradation efficiency for bisphenol A of 98.62%in 120 min and photocatalytic hydrogen production of 863.44 mmol h^(-1) g^(-1) on exposure to visible light.The excellent visible-light photocatalytic performance is as a result of the Z-scheme heterojunction,which extends absorption to the visible light region,as well as the I_(3)^(-)/I^(-) pairs,which accelerate photoinduced charge carrier transfer and separation,thus dramatically boosting the photocatalytic performance.In addition,the key role of the charge transfer across the indirect Z-scheme heterojunction has been elucidated and the transfer mechanism is confirmed based on the detection of intermediate I_(3)^(-)ions.Thus,this study provides guidelines for the design of indirect Z-scheme heterojunction photocatalysts.
基金financially supported by the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(LSMRI)(KF160413)the National Natural Science Foundation of China(21301161,41376126)~~
文摘Zero‐dimensional carbon dots(0D C‐dots)and one‐dimensional sulfide cadmium nanowires(1D CdS NWs)were prepared by microwave and solvothermal methods,respectively.A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C‐dots(C‐dots/CdS NWs)were synthesized using chemical deposition methods.The mass fraction of C‐dots to CdS NWs in these photocatalysts was varied.The photocatalysts were characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron spectroscopy,and ultraviolet‐visible spectroscopy.Their photocatalytic performance for the spitting of water and the degradation of rhodamine B(RhB)under visible light irradiation were investigated.The photocatalytic performance of the C‐dots/CdS NWs was enhanced when compared with that of the pure CdS NWs,with the 0.4%C‐dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB.The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C‐dots and CdS NWs.This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.
文摘The In-doped CdTe/Si (p) heterostruture was fabricated and its electrical and photoelectrical properties were studied and interpreted. During the fabrication processes of CdTe/Si heterojunction, some practical troubles were encountered. However, the important one was the formation of the SiO2 thin oxide layer on the soft surface of the Si during the formation of the back contact. The silicon wafer was subjected to different chemical treatments in order to remove the thin oxide layer from the silicon wafer surfaces. It was found that the heterojunction with Si (p+) substrate gave relatively high open circuit voltage comparing with that of Si (p) substrate. Also an electroforming phenomenon had been observed in this structure for the first time which may be considered as a memory effect. It was observed that there are two states of conduction, non-conducting state and conducting state. The normal case is the non-conducting state. As the forward applied voltage increased beyond threshold value, it switches into the conducting state and remains in this state even after the voltage drops to zero.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.202300410304)the Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.21A140021)。
文摘Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and Cd S nanofilms on the ITO glass in turn.The relation of current density to applied voltage(I-V)shows the obvious rectification effect.From the analysis of the double logarithm I-V curve it follows that below~2.73 V the electron behaviors obey the Ohmic mechanism and above~2.73 V the electron behaviors conform to the space charge limited current(SCLC)mechanism.In the SCLC region part of the traps between the Fermi level and conduction band are occupied,and with the increase of voltage most of the traps are occupied.It is believed that Cd S/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure.