The crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) has been redetermined with the single -crystal sample collected from Bayan Obo, Inner Mongolia, China. The chemical formula of the sample is Ce4F...The crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) has been redetermined with the single -crystal sample collected from Bayan Obo, Inner Mongolia, China. The chemical formula of the sample is Ce4Fe2Ti3Si4O22. The crystals are monoclinic with the unit cell parameters a = 13.4656(15) ?, b = 5.7356(6) ?, c = 11.0977(12) ?, β= 100.636(2)o, V = 842.39 (16) ?3 and Z = 2. The structures of Ti- and Fe2+-rich chevkinite-(Ce) were refined with space groups P21/a and C2/m. Least-squares refinement results show that both structural models of Ti- and Fe2+-rich chevkinite-(Ce) are very good, R[F2>2σ(F2)] =0.027 with P21/a and R[F2>2σ(F2)] =0.021 with C2/m. In order to illustrate the relationship between the two space groups P21/a and C2/m, the distribution of diffraction intensities was inspected. Pseudo extinction was found, i.e., reflections with h+k=2n are systematically strong, while those with h+k=2n+1 are weak. By neglecting the systematically weak (h+k=2n+1) reflections the space group becomes C2/m. There is a mirror plane in the C2/m perpendicular to the b axis. However, oxygen atoms in the P21/a model are of a symmetrical relationship with the corresponding pseudo mirror plane. It is concluded that the crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) is a superstructure with the space group of P21/a, which is of pseudo symmetry corresponding to the space group C2/m.展开更多
In this paper, photorefractive crystals of Ce, Fe:LiNbO 3 are systematically studied. The crystals have been grown by Czochralski method. The samples with different doping concentrations and oxidation/reduction treat...In this paper, photorefractive crystals of Ce, Fe:LiNbO 3 are systematically studied. The crystals have been grown by Czochralski method. The samples with different doping concentrations and oxidation/reduction treatments have been fabricated. Their photorefractive properties were experimentally investigated by using two beam coupling. The results show that the photorefractive efficiency depends on the dopant concentration, oxidation/reduction treatment, and light wavelength. The doping mechanism is also discussed here.展开更多
in the range of 20 to 120 ℃, the two-beam coupling exponential gain coefficient and the four-wave mixing phase conjugation reflectivity have been investigated. It is shown that the values such as the gain, the phase...in the range of 20 to 120 ℃, the two-beam coupling exponential gain coefficient and the four-wave mixing phase conjugation reflectivity have been investigated. It is shown that the values such as the gain, the phase conjugation reflectivity and the response speed increase as the temperature increases. At about 55, 71 and 110℃, extraordinary enhancement of the gain and the phase conjugation reflectivity were observed.The mechanism is analyzed by the phase change in the crystal at these temperatures.展开更多
Crystallization behaviors of Ce60Al15Fe5+xCo20-x(x=0,5,10) bulk metallic glasses(BMGs) were studied by means of differential scanning calorimeter(DSC) and X-ray diffraction(XRD).The crystallization processes of differ...Crystallization behaviors of Ce60Al15Fe5+xCo20-x(x=0,5,10) bulk metallic glasses(BMGs) were studied by means of differential scanning calorimeter(DSC) and X-ray diffraction(XRD).The crystallization processes of different samples were simulated by JMA equation.Experimental results demonstrated that incubation and crystallization time increased with decreasing isothermal temperature for the same sample.The crystallization mechanism of CeAlFeCo BMGs was discussed.展开更多
ZnO(4mol%),In 2O 3(1mol%)and Fe 2O 3(0.05mol%)were doped in LiNbO 3 and Czochralski method was used to grow Zn∶In∶Fe∶LiNbO 3 crystal.The diameter of the crystal we grew is 30mm.The technology parameter we took is t...ZnO(4mol%),In 2O 3(1mol%)and Fe 2O 3(0.05mol%)were doped in LiNbO 3 and Czochralski method was used to grow Zn∶In∶Fe∶LiNbO 3 crystal.The diameter of the crystal we grew is 30mm.The technology parameter we took is that the axial temperature gradient is 40℃/cm,the growth rate is 1mm/h, the rotation rate is 15-25r/min,the temperature of polarization is 1220℃ and the current density of polarization is 5mA/cm 2.The wafer dimension is 10mm×10mm×3mm and was covered in Li 2CO 3 powder to reduce.The reduction temperature is 500℃ and reduction time is 30 hours. OH - stretch vibration transmission spectra were measured by Fourier infrared spectrophotometer. There are two absorption peaks in OH - spectra of Zn∶In∶Fe∶LiNbO 3,in which one is at 3534cm -1 (2.83μm) and the other is at 3505cm -1 (2.85μm).The peak at 2.85μm is far lower than that at 2.83μm. Because of the threshold effect of Zn 2+ and In 3+ ,the peak at 2.83μm is generated and the peak at 2.85μm is related with Fe 3+ .In LiNbO 3 only doped with Fe,Li + site is taken place by Fe 3+ .When doping Zn 2+ and In 3+ in high concentration,these two ions take place Nb that is at Li site and Fe 3+ substitutes for Nb 5+ at the same time.The interaction between Fe 3+ and OH - make the OH - peak shift to 2.85μm.展开更多
1 Introduction Lithium niobate crystal (LN) has photoelectric effect and nonlinear optic effect, whose properties may be improved by doping impure ions. The study on the Fe: LN crystal was developed early and the holo...1 Introduction Lithium niobate crystal (LN) has photoelectric effect and nonlinear optic effect, whose properties may be improved by doping impure ions. The study on the Fe: LN crystal was developed early and the holographic storage, optical amplification and phase conjugation mirror have been carried out, but at present, many problems on the research of Fe: LN crystal are unresolved, for example, the absorption is strong for A_r^+-ion laser beam, the energy loss of light source is large, the scattering of the output light beam is intense, the spatial distribution is not uniform, etc. Therefore, it is necessary to fur-展开更多
基金supported by the National Natural Science Foundation of China(Grant 40472030)
文摘The crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) has been redetermined with the single -crystal sample collected from Bayan Obo, Inner Mongolia, China. The chemical formula of the sample is Ce4Fe2Ti3Si4O22. The crystals are monoclinic with the unit cell parameters a = 13.4656(15) ?, b = 5.7356(6) ?, c = 11.0977(12) ?, β= 100.636(2)o, V = 842.39 (16) ?3 and Z = 2. The structures of Ti- and Fe2+-rich chevkinite-(Ce) were refined with space groups P21/a and C2/m. Least-squares refinement results show that both structural models of Ti- and Fe2+-rich chevkinite-(Ce) are very good, R[F2>2σ(F2)] =0.027 with P21/a and R[F2>2σ(F2)] =0.021 with C2/m. In order to illustrate the relationship between the two space groups P21/a and C2/m, the distribution of diffraction intensities was inspected. Pseudo extinction was found, i.e., reflections with h+k=2n are systematically strong, while those with h+k=2n+1 are weak. By neglecting the systematically weak (h+k=2n+1) reflections the space group becomes C2/m. There is a mirror plane in the C2/m perpendicular to the b axis. However, oxygen atoms in the P21/a model are of a symmetrical relationship with the corresponding pseudo mirror plane. It is concluded that the crystal structure of non-metamict Ti- and Fe2+-rich chevkinite-(Ce) is a superstructure with the space group of P21/a, which is of pseudo symmetry corresponding to the space group C2/m.
文摘In this paper, photorefractive crystals of Ce, Fe:LiNbO 3 are systematically studied. The crystals have been grown by Czochralski method. The samples with different doping concentrations and oxidation/reduction treatments have been fabricated. Their photorefractive properties were experimentally investigated by using two beam coupling. The results show that the photorefractive efficiency depends on the dopant concentration, oxidation/reduction treatment, and light wavelength. The doping mechanism is also discussed here.
文摘in the range of 20 to 120 ℃, the two-beam coupling exponential gain coefficient and the four-wave mixing phase conjugation reflectivity have been investigated. It is shown that the values such as the gain, the phase conjugation reflectivity and the response speed increase as the temperature increases. At about 55, 71 and 110℃, extraordinary enhancement of the gain and the phase conjugation reflectivity were observed.The mechanism is analyzed by the phase change in the crystal at these temperatures.
基金supported by the Foundation of Science & Technology Department of Henan Province (082102230035)
文摘Crystallization behaviors of Ce60Al15Fe5+xCo20-x(x=0,5,10) bulk metallic glasses(BMGs) were studied by means of differential scanning calorimeter(DSC) and X-ray diffraction(XRD).The crystallization processes of different samples were simulated by JMA equation.Experimental results demonstrated that incubation and crystallization time increased with decreasing isothermal temperature for the same sample.The crystallization mechanism of CeAlFeCo BMGs was discussed.
文摘ZnO(4mol%),In 2O 3(1mol%)and Fe 2O 3(0.05mol%)were doped in LiNbO 3 and Czochralski method was used to grow Zn∶In∶Fe∶LiNbO 3 crystal.The diameter of the crystal we grew is 30mm.The technology parameter we took is that the axial temperature gradient is 40℃/cm,the growth rate is 1mm/h, the rotation rate is 15-25r/min,the temperature of polarization is 1220℃ and the current density of polarization is 5mA/cm 2.The wafer dimension is 10mm×10mm×3mm and was covered in Li 2CO 3 powder to reduce.The reduction temperature is 500℃ and reduction time is 30 hours. OH - stretch vibration transmission spectra were measured by Fourier infrared spectrophotometer. There are two absorption peaks in OH - spectra of Zn∶In∶Fe∶LiNbO 3,in which one is at 3534cm -1 (2.83μm) and the other is at 3505cm -1 (2.85μm).The peak at 2.85μm is far lower than that at 2.83μm. Because of the threshold effect of Zn 2+ and In 3+ ,the peak at 2.83μm is generated and the peak at 2.85μm is related with Fe 3+ .In LiNbO 3 only doped with Fe,Li + site is taken place by Fe 3+ .When doping Zn 2+ and In 3+ in high concentration,these two ions take place Nb that is at Li site and Fe 3+ substitutes for Nb 5+ at the same time.The interaction between Fe 3+ and OH - make the OH - peak shift to 2.85μm.
基金Project supported by the National Natural Science Foundation of China
文摘1 Introduction Lithium niobate crystal (LN) has photoelectric effect and nonlinear optic effect, whose properties may be improved by doping impure ions. The study on the Fe: LN crystal was developed early and the holographic storage, optical amplification and phase conjugation mirror have been carried out, but at present, many problems on the research of Fe: LN crystal are unresolved, for example, the absorption is strong for A_r^+-ion laser beam, the energy loss of light source is large, the scattering of the output light beam is intense, the spatial distribution is not uniform, etc. Therefore, it is necessary to fur-