The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully b...The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully blending(ZS-MM). The used catalysts were characterized by XRD, N;adsorption–desorption, TGA, TPO, elemental analysis, FTIR and XPS. The coking kinetics on both ZS-HS and ZS-MM has been investigated and their coking rate equations were obtained. The used ZS-MM catalyst had higher amount of coke and lower nC:nHthan the used ZS-HS. 90% of the coke was deposited in the micropores of ZS-HS, while almost 45% of the coke located in the micropores of ZS-MM. The coke deposited on ZS-HS catalyst was mainly graphite-like carbon species, whereas dehydrogenated coke species was the major on ZS-MM. The coking activation energy of ZS-MM was lower than that of ZS-HS, and the coking rate on ZS-MM was faster than on ZS-HS. In addition, the regeneration of ZS-MM catalyst showed that it had a good hydrothermal stability. The differences on coking behaviors on the two catalysts were due to their different acidic properties and textures.展开更多
Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject...Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.展开更多
The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of ...The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.展开更多
Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and ...Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and valence state were characterized by SEM, XRD, ICP and XPS, respectively. The experimental results show the active component Cu of the catalysts via in situ synthesis could significantly improve the selective catalytic reduction (SCR) activities of NOx and the optimal Cu content is in the range of 0.30%-0.40%(mass fraction). No N 2 O is detected by gas chromatograph (GC) during the evaluation process, which implies that NOx is almost entirely converted to N2 over Cu-SAPO-34/cordierite catalyst. The conversion rate of NOx to N2 by NH3 over catalyst could almost be up to 100%in the temperature range of 300-670 ℃with a space velocity of 12000 h-1 and it is still more than 60% at 300-620 ℃ under 36000 h-1. The catalysts also show the good hydrothermal and chemical stability at the atmosphere with H 2 O.展开更多
基金support for this work from National Ministry of Education(No.NCET-10-878)Shaanxi Province(No.2011ZKC4-08,2009ZDKG-70)Northwest University(10YSY08)
文摘The coke deposition on HZSM-5/SAPO-34 composite catalysts has been studied in the conversion of ethanol to propylene. The HZSM-5/SAPO-34 composite catalysts were synthesized by hydrothermal method(ZS-HS) and fully blending(ZS-MM). The used catalysts were characterized by XRD, N;adsorption–desorption, TGA, TPO, elemental analysis, FTIR and XPS. The coking kinetics on both ZS-HS and ZS-MM has been investigated and their coking rate equations were obtained. The used ZS-MM catalyst had higher amount of coke and lower nC:nHthan the used ZS-HS. 90% of the coke was deposited in the micropores of ZS-HS, while almost 45% of the coke located in the micropores of ZS-MM. The coke deposited on ZS-HS catalyst was mainly graphite-like carbon species, whereas dehydrogenated coke species was the major on ZS-MM. The coking activation energy of ZS-MM was lower than that of ZS-HS, and the coking rate on ZS-MM was faster than on ZS-HS. In addition, the regeneration of ZS-MM catalyst showed that it had a good hydrothermal stability. The differences on coking behaviors on the two catalysts were due to their different acidic properties and textures.
基金the National Natural Science Foundation of China(91834302)。
文摘Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.
文摘The utilization of metal oxide‐zeolite catalysts in the syngas‐to‐olefin reaction is a promising strategy for producing C_(2)–C_(4) olefins from non‐petroleum resources.However,the effect of the crystal phase of metal oxides on the catalytic activity of these oxides is still ambiguous.Herein,typical metal oxides(ZnO/ZrO_(2))with different crystal phases(monoclinic(m‐ZrO_(2))and tetragonal(t‐ZrO_(2)))were employed for syngas conversion.The(ZnO/m‐ZrO_(2)+SAPO‐34)composite catalyst exhibited 80.5%selectivity for C_(2)–C_(4) olefins at a CO conversion of 27.9%,where the results are superior to those(CO conversion of 16.4%and C_(2)–C_(4) olefin selectivity of 76.1%)obtained over(ZnO/t‐ZrO_(2)+SAPO‐34).The distinct differences are ascribed to the larger number of hydroxyl groups,Lewis acid sites,and oxygen defects in ZnO/m‐ZrO_(2) compared to ZnO/t‐ZrO_(2).These features result in the formation of more formate and methoxy intermediate species on the ZnO/m‐ZrO_(2) oxides during syngas conversion,followed by the formation of more light olefins over SAPO‐34.The present findings provide useful information for the design of highly efficient ZrO_(2)‐based catalysts for syngas conversion.
基金Project(20906067)supported by the National Natural Science Foundation of ChinaProject(2011M500543)supported by the Postdoctoral Science Foundation of ChinaProject supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi
文摘Cu-SAPO-34/cordierite catalysts were prepared via one-step hydrothermal synthesis method and their performances to remove NO x from the diesel vehicle exhaust were evaluated. The morphology, structure, Cu content and valence state were characterized by SEM, XRD, ICP and XPS, respectively. The experimental results show the active component Cu of the catalysts via in situ synthesis could significantly improve the selective catalytic reduction (SCR) activities of NOx and the optimal Cu content is in the range of 0.30%-0.40%(mass fraction). No N 2 O is detected by gas chromatograph (GC) during the evaluation process, which implies that NOx is almost entirely converted to N2 over Cu-SAPO-34/cordierite catalyst. The conversion rate of NOx to N2 by NH3 over catalyst could almost be up to 100%in the temperature range of 300-670 ℃with a space velocity of 12000 h-1 and it is still more than 60% at 300-620 ℃ under 36000 h-1. The catalysts also show the good hydrothermal and chemical stability at the atmosphere with H 2 O.